Proposta experimental sobre a lei de Gauss da eletrostática com esferas condutoras e um eletroscópio eletrônico

Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Campus Salgueiro, Salgueiro, PE, Brasil.

RESUMO

A descoberta dos fenômenos elétricos sempre esteve intimamente atrelada à experimentação. A maioria das descrições teóricas para explicar tais fenômenos é, por vezes, abstrata para o entendimento de muitos estudantes de física. Baseado nessa discussão, o presente trabalho propõe uma atividade experimental para o ensino da eletrostática, utilizando, para isso, duas esferas de aço idênticas presas a suportes isolantes. São descritos métodos práticos de como eletrizar tais esferas por meio de atrito, contato e indução. Usando um eletroscópio eletrônico de baixo custo, propõe-se um experimento que visa validar o resultado da lei de Gauss para esferas condutoras através da medicão das distâncias da esfera eletrizada até a antena do eletroscópio, obtendo, assim, o comportamento quadrático previsto pela equação. Espera-se que tal metodologia seja um acréscimo às ferramentas didáticas que podem ser utilizadas nessa área de ensino.

Palavras-chave: eletrostática; ensino de física; eletroscópio eletrônico; campo elétrico

1. Introdução

aseando-se na história da física, vemos que o pontapé inicial da maioria das descobertas do ramo da eletricidade e do magnetismo começou necessariamente pela observação empírica dos fenômenos. Desde a sua descoberta e seus primeiros estudos, os fenômenos eletrostáticos sempre estiveram intimamente ligados à experimentação. Seus estudos sistemá-

ticos básicos se estendem entre os séculos XVII e XVIII e grande parte do seu desenvolvimento teórico veio justamente da experimentação, da observação direta e de análises e deduções

das aparentes causas dos fenômenos [1, 2].

Quando nos referimos ao ensino dessa área da física nos dias atuais, McManus [3] relata que muitos estudantes de física têm dificuldades em internalizar conceitos importantes de eletrostática, e um dos motivos disso é a pouca ou nenhuma realização de atividades de cunho prático, que ajudaria esses estudantes a entender as ideias centrais e de como elas se desenvolveram ao longo da história.

De fato, há uma grande escassez de novas metodologias e experimentos para estudo e assimilação deste ramo da física. Além disso, os próprios laboratórios didáticos tradicionais não trazem muitas alternativas para isso. Assim, faz-se necessário uma abordagem voltada ao uso de laboratórios didáticos improvisados, assim como de novas metodologias experimentais voltadas para o ensino. Tais atividades se mostram necessárias não só aos alunos dos

ensinos fundamental e médio, mas também aos universitários, como é destacado por Pinho Alves [4].

Tendo em vista essa discussão, o presente trabalho propõe uma abordagem experimental envolvendo a eletrostática, utilizando, para isso, duas esferas condutoras e um eletroscópio eletrônico de baixo custo. O texto está estruturado da seguinte forma: na seção 2 estão expostos os métodos e materiais gerais adotados para a proposta,

bem como descrições de como eletrizar as esferas e de como é construído o eletroscópio eletrônico. Na seção 3 é abordado o experimento que envolve o uso do eletroscópio eletrônico a fim

de validar a lei de Gauss para o caso de uma esfera condutora. Por fim, na seção 4, temos as considerações finais do trabalho.

2 Métodos para eletrização dos

2. Métodos para eletrização dos materiais

Para a realização do experimento proposto neste trabalho, foram utilizadas pelos autores duas esferas ocas de aço polido, cada uma com diâmetro de 14 cm. As esferas foram fixadas com cola quente a um suporte vertical feito de material isolante, que pode ser feito de canos e de junções PVC.

É imprescindível que as esferas sejam de material condutor. No entanto, também é possível utilizar, no lugar das esferas de aço, esferas de isopor forradas com uma fina e bem ajustada camada de papel alumínio. Essa alternativa produz um pouco mais de perda de cargas com o passar do tempo devido ao efeito do poder das pontas nas folhas

Sem a experimentação em sala

de aula, o ensino-aprendizagem

da eletrostática se torna vazio e

abstrato

[#]Autor de correspondência. E-mail: thiago. muniz@ifsertao-pe.edu.br.

de alumínio, facilitando uma possível descarga de corona. Contudo, como verificado pelos autores, mesmo utilizando esses materiais de baixo custo, ainda se torna possível estudar qualitativamente as propostas discutidas no presente trabalho.

2.1. Eletrizando as esferas

Durante as atividades, as esferas precisaram ser eletrizadas por algum processo (indução ou contato) para que, dessa forma, adquirissem carga elétrica positiva ou negativa. Em alguns métodos, é necessário usar materiais isolantes previamente eletrizados por atrito com papel toalha (como forro de PVC ou uma bandeja de acrílico). Com isso, é possível eletrizar as esferas pelo processo de indução, aproximando-as dos isolantes carregados, como mostra a Fig. 1.

Outra forma de realizar a eletrização por indução é com o uso de um gerador eletrostático de Van de Graaff carregado, de acordo com a Fig. 2. Também é possível eletrizar a esfera por contato, encostando-a diretamente na cúpula do gerador.

Detectar experimentalmente o sinal da carga nos materiais não é possível por meio de instrumentos como o eletroscópio de folhas, por exemplo [5]. No entanto, com o uso de um eletroscópio eletrônico simples de baixo custo, podese determinar o sinal da carga dos materiais de forma bem simples, como é discutido por Sampaio e cols. [6].

É importante destacar que o manuseio das esferas eletricamente carregadas durante os experimentos deverá ser feito por meio do suporte isolante, pois o toque com as mãos nas esferas condutoras provoca o fenômeno de aterramento, dado que o corpo humano é um condutor em contato com a Terra, causando a descarga as esferas.

Para maximizar a capacidade de eletrização de maneira geral, é interessante que a umidade seja completamente removida dos materiais a serem utilizados. Isso pode ser feito expondo-os ao sol minutos antes do experimento, ou utilizando um jato de ar quente de um secador de cabelo, por exemplo. Outra alternativa é realizar os experimentos em uma sala com aparelho de ar-condicionado ligado, o que ajudará a retirar a umidade do ar, dificultando, assim, a perda de cargas dos objetos para o ar [2].

2.2. Divisão de cargas entre esferas

Com uma esfera previamente ele-

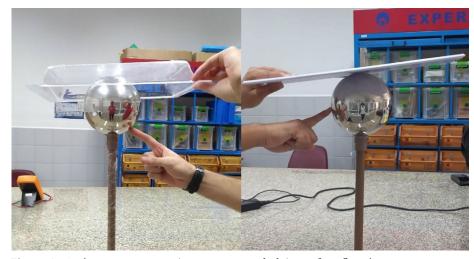


Figura 1 - Após o aterramento (contato com o dedo), a esfera ficará com cargas negativas (positivas) ao ser induzida pelo acrílico (PVC) carregado. Não é necessário encostar o isolante na esfera.

Figura 2 - Após contato com o dedo (aterramento), a esfera terá carga de sinal oposto ao da carga presente na cúpula do gerador de Van de Graaff.

trizada, é possível distribuir suas cargas com outra esfera condutora, inicialmente neutra, após o contato das duas, como mostra a Fig. 3. Depois desse contato, cada esfera terá uma fração da carga inicial.

Considerando que as esferas tenham o mesmo raio, sabemos que, pelo princípio de conservação da carga elétrica e pela igualdade dos potenciais elétricos das superfícies das esferas durante o contato, a quantidade de cargas inicialmente presente na primeira esfera passará a ser dividida pela metade entre as duas esferas após o contato. Esse método será utilizado na seção 3.2 como uma forma de variar a carga de

Figura 3 - Após o contato entre duas esferas condutoras, a carga elétrica é distribuída entre elas.

uma das esferas durante o experimen-

Com o uso de um eletroscópio de folhas ou eletrônico, é possível verificar que as cargas nas duas esferas terão o mesmo sinal após o contato, além de ser possível visualizar que as duas esferas tenham quantidades aproximadamente iguais de carga elétrica, verificando que a aproximação de ambas as esferas, uma por vez, a uma distância fixa do eletroscópio, produzirá um efeito semelhante nele.

2.3. O eletroscópio eletrônico

Para a realização da proposta experimental, é necessário a utilização de um eletroscópio eletrônico a base de um transistor de efeito de campo (FET –

Field Effect Transistor). Esse tipo de eletroscópio tem uma maior sensibilidade na detecção de campos eletrostáticos e apresenta inúmeras vantagens em relação a eletroscópios mecânicos. A discussão física sobre o funcionamento desse dispositivo é abordada em detalhes na Ref. [6].

Para a construção do eletroscópio em questão, são necessários uma *protoboard*, uma bateria de 9 V, um multímetro (com função amperímetro), um resistor de 1 kO (opcional), um resistor de 10 MO (opcional), um pedaço de fio de cobre de 20 cm (antena) e um transistor de efeito de campo JFET MPF102 (Fig. 4). Os detalhes sobre o papel de cada componente no circuito são explicados pela Ref. [6].

Ao aproximar um corpo carregado da antena do eletroscópio, é possível notar efeitos distintos na corrente elétrica do circuito dependendo do sinal da carga do corpo. Como o transistor MPF102 tem uma junção polarizada negativamente (junção pnp), ele funcionará melhor com corpos portando carga negativa. Sendo assim, torna-se importante que a esfera seja eletrizada negativamente durante o experimento.

Ouando corpos negativos são aproximados do eletroscópio, o valor da corrente elétrica medido pelo amperímetro tende a diminuir, podendo chegar a zero. O pressuposto inicial deste tipo de teste experimental é hipotetizar que, quanto menor for o valor de corrente elétrica atravessando o FET, maior seria a intensidade do campo elétrico nas imediações da antena. Esse entendimento é fundamental para assumirmos que a diminuição do valor de corrente obtida no multímetro, por mais que dependa de processos quânticos que estão ocorrendo nas junções pnp do FET [7], teria como gerador fundamental o campo eletrostático gerado pelo objeto carregado que aproximamos da antena.

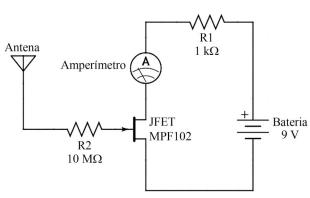


Figura 4 - Diagrama do circuito do eletroscópio eletrônico.

Encontrar uma relação matemática empírica entre a corrente elétrica no FET e o módulo do campo eletrostático nas suas imediações é uma tarefa difícil, devido às limitações físicas do transistor e de outros fatores que perturbam medições precisas na eletrostática, como a umidade do ar e as induções e polarizações em objetos próximos. No entanto, ainda podemos dispor de algumas estratégias experimentais para o uso deste dispositivo. Podemos, por exemplo, assumir que o campo elétrico nas imediações da antena permanece constante, se, e somente se, o valor da corrente elétrica permanecer constante no circuito do eletroscópio.

3. Verificando a lei de Gauss para uma esfera carregada

3.1. A lei de Gauss para uma esfera condutora carregada

A lei de Gauss é uma alternativa à lei de Coulomb para resolução de problemas eletrostáticos. Embora sejam equivalentes, apresentam, de uma forma diferente, uma relação entre a carga elétrica e o campo elétrico. Esta lei afirma que o fluxo elétrico total através de uma superfície fechada é diretamente proporcional à carga elétrica líquida Q_{int} existente no interior dessa superfície. Matematicamente [8]

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{int}}{\epsilon_0}.$$

Para o caso particular de uma esfera condutora de raio R carregada com carga Q, podemos aplicar a lei de Gauss tomando uma superfície gaussiana esférica de raio r > R concêntrica à esfera carregada. Nesse caso, o campo elétrico gerado será radial e perpendicular a cada ponto da superfície gaussiana (Fig. 5).

Sendo assim, o fluxo elétrico calculado através dessa superfície será simplesmente $E.4\pi r^2$, que, aplicando-se à lei de Gauss, obtém-se o módulo do campo elétrico a uma distância r a partir do centro da esfera carregada

$$E = \frac{Q}{4\pi\varepsilon_0 r^2},\qquad (1)$$

que vale para quaisquer pontos no exterior da esfera carregada. Tal resultado é idêntico ao obtido direta-

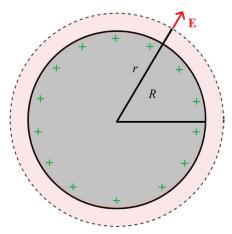


Figura 5 - Superfície gaussiana esférica de raio r envolvendo uma esfera com cargas positivas de raio R.

mente da lei de Coulomb para o campo elétrico a uma distância r de uma carga puntiforme Q.

Se tomarmos uma superfície gaussiana com r < R, concluiremos que o campo elétrico será necessariamente nulo em todos os pontos no interior da esfera condutora carregada, visto que não há carga elétrica contida no interior dessa superfície. Em outras palavras: toda a carga elétrica está contida na camada externa da esfera [9].

3.2. Verificação experimental da lei de Gauss

Para a realização do experimento, é necessário colocar o eletroscópio em um suporte vertical de modo que ele fique próximo da altura da esfera. Além disso, a antena do eletroscópio pode ser posicionada de forma que ela fique diretamente apontada para o centro da esfera condutora, como mostra a Fig. 6. Para garantir esse alinhamento, o centro da esfera precisa ser posicionado sobre o eixo central onde a antena está posicionada. Isso pode ser conseguido colando-se na bancada uma fita adesiva em linha reta, partindo da parte de baixo da antena. Podem ser feitas marcações de distância na própria fita, ou dispor de papéis milimetrados colados à bancada, o que facilitará as medições de distância.

Considerando uma distância x que deve ser tomada do centro da esfera até a extremidade da antena do eletroscópio, a ideia do experimento é estudar para qual valor de x a corrente no eletroscópio atinge o valor zero (Fig. 7). Assumindo que para um mesmo valor de corrente no eletroscópio, a intensidade do campo elétrico nas imediações seja constante, podemos estudar uma rela-

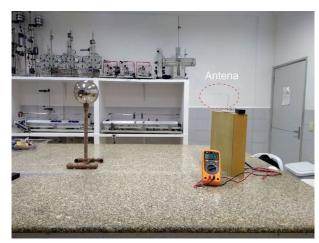


Figura 6 - Aparato experimental: esfera condutora carregada e eletroscópio eletrônico.

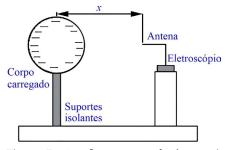


Figura 7 - A esfera carregada é aproximada até que a corrente se anule no eletroscópio. Anota-se o valor da distância *x*. Depois, sua carga é dividida pela metade pelo contato com outra esfera condutora neutra idêntica, e repete-se o processo.

ção entre a carga da esfera em função da distância x. Para isso, torna-se necessário um método para mudar a carga elétrica da esfera de modo controlado.

Para que seja possível repetir o experimento com valores diferentes de carga, após a medição da distância x, a esfera carregada deve ser rapidamente encostada na segunda esfera idêntica a esta, inicialmente neutra (Fig. 3), como discutido na seção 2.2. No momento do contato, a carga da esfera será dividida pela metade entre as duas esferas. A segunda esfera pode ser então aterrada para que perca suas cargas, tocando-se nela com o dedo da mão. A esfera principal agora está com carga igual à metade do seu valor inicial e pode

ser novamente aproximada em direção ao eletroscópio até que a corrente no mesmo se anule para obter um novo valor de distância x, que deverá ser menor que o primeiro valor mensurado.

Sendo assim, o procedimento pode ser repetido algumas vezes: aproxima--se a esfera ao longo do eixo central até que a corrente apontada pelo multímetro seja zero e anota-se o valor da distância x. Depois, ela é colocada em contato com a esfera neutra, dividindo sua carga pela metade. A segunda esfera é aterrada para descarregá-la, repetindo o processo até que a esfera chegue tão próxima da antena que não consiga mais provocar uma corrente nula no eletroscópio, sendo, assim, impossível de obter um novo valor para x (Fig. 8). É interessante que haja agilidade nos processos por conta da possível perda de cargas para o ar que a esfera possa

sofrer devido à descarga de corona.

Sendo Q_0 a carga inicial da esfera, após n divisões por contato com a esfera secundária neutra, a carga na esfera principal pode ser obtida em função de Q_0 pela relação $Q = 2^{-n} Q_0$, onde Q é dividida pela metade após cada contato com a outra esfera neutra.

A equação teórica que o experimento tenta sondar parte da Eq. (1), resultado direto da lei de Gauss. Considerando o módulo do campo elétrico como uma constante, temos

$$Q(x) = 4\pi\varepsilon_0 E x^2. \tag{2}$$

Com dados extraídos por um dos testes experimentais realizado pelos autores, foi possível gerar um gráfico entre os valores relativos de carga *Q* da esfera em função das distâncias *x* (Fig. 9).

O gráfico mostra uma parábola que se ajusta bem aos dados mensurados, confirmando o comportamento que deveria ser esperado pela Eq. (4). Linearizando os dados, podemos ver também um comportamento linear entre Q e x^2 (Fig. 10).

Os testes experimentais foram repetidos diversas vezes pelos autores, sendo mantido o comportamento gráfico mostrado nas Figs. 9 e 10. Devido à impossibilidade de mensurar o valor da carga absoluta no experimento, bem como de conseguir repetir a mesma configuração com a mesma quantidade de carga inicial, não foi possível realizar análises estatísticas dos resultados, nem analisar fisicamente o coeficiente angular da regressão. Contudo, vemos que, com um dispositivo relativamente simples e de baixo custo, é possível mostrar que há uma relação entre a

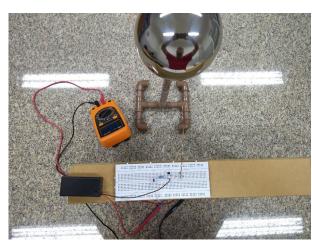


Figura 8 - Esfera carregada bem próxima da antena do eletroscópio.

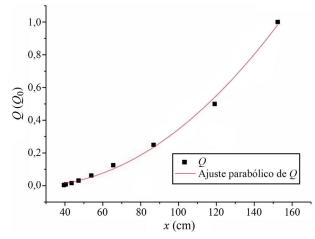


Figura 9 - Gráfico dos valores de carga Q da esfera em unidades de Q_0 , em função das distâncias x da esfera até a antena do eletroscópio.

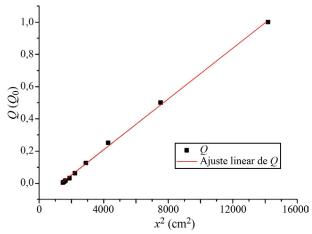


Figura 10 - Gráfico de $Q(Q_0)$ por x^2 (cm²), com reta ajustada por regressão linear.

carga de uma esfera condutora em função da sua distância para um dado valor constante de campo elétrico, e que esta relação é aproximadamente quadrática, como prevê a lei de Gauss.

5. Considerações finais

Reiteramos que as atividades experimentais são totalmente indissociáveis do processo de aprendizagem. Vimos que é possível, dispondo de materiais de relativo baixo custo, levantar algumas discussões importantes e essenciais acerca de efeitos e particularidades da teoria eletrostática. Embora a teoria seja muito importante, todo o desenvolvimento da teoria eletromagnética começou de forma experimental, ou seja, tentativas de entender, quantificar e obter equações que expli-

quem os efeitos dos fenômenos que são observados se mostram de fundamental importância para o ensino-aprendizagem desses assuntos.

Sobre o experimento proposto, observou-se que o eletroscópio eletrônico é mais uma entre várias ferramentas úteis e simples que podem contribuir para o processo de ensino. O experimento obteve êxito em mostrar uma relação quadrática predita pela lei de Gauss para o caso de uma esfera condutora. Tal resultado não é encontrado na literatura de ensino de física existente. Além disso, espera-se que no futuro seja possível encontrar uma relação matemática empírica entre a corrente elétrica que atravessa o FET e o potencial ou o campo eletrostático detectado pela antena, servindo, assim, para quantificar medições de potencial ou de campo elétrico de forma simples.

Recebido em: 15 de Outubro de 2022 Aceito em: 16 de Novembro de 2022

Referências

- [1] B. Baigrie, Electricity and Magnetism: A Historical Perspective (Greenwood Press, Westport, 2007), p. 20.
- [2] H.M. Nussenzveig, Curso de Física Básica, Vol. 3 (Edgard Blücher, São Paulo, 1997).
- [3] J. Mcmanus, Phys. Teach. 55, 252 (2017).
- [4] J. Pinho Alves, Caderno Catarinense de Ensino de Física 17, 174 (2000).
- [5] A.M.R. Luz, B. Alvarenga, Física: Volume Único (Scipione, São Paulo, 2007).
- [6] T.A.M. Sampaio, E.S. Rodrigues, C.J.M. Souza, Caderno Brasileiro de Ensino de Física 34, 298 (2017).
- [7] P.A. Tipler, R.A. Llewellyn, Física Moderna (LTC, Rio de Janeiro, 2014).
- [8] H.D. Young, R.A. Freedman, Física III (Pearson, São Paulo, 2015).
- [9] P.A. Tipler, G. Mosca, Física Para Cientistas e Engenheiros. Vol. 2: Eletricidade e Magnetismo, Óptica (Grupo Gen-LTC, São Paulo, 2000).