Theoretical and Observational Aspects of Coupled Dark Energy

Andresa Campos, Rogerio Rosenfeld IFT-Unesp, ICTP-SAIFR

XIX Swieca Summer School on Particles and Fields February 10, 2017

Standard Cosmological Model - ΛCDM

Standard Cosmological Model - Λ CDM

Standard Cosmological Model - Λ CDM

Standard Cosmological Model - Λ CDM

Coupled Quintessence

Standard Cosmological Model - Λ CDM

Several issues!!)

Coupled Quintessence

Phenomenological Fluids

II - Coupled Dark Energy (Phen. Approach)

• Energy-momentum tensor:

$$\nabla_{\nu} T^{\nu}_{(\alpha)\mu} = Q_{(\alpha)\mu},$$

with the constraint

$$\sum_{\alpha} Q_{(\alpha)\mu} = 0.$$

• The choice of $Q_{(\alpha)\mu}$ specifies the strength of the coupling.

$$Q = 3\mathcal{H}\lambda\rho_d.$$

 λ : new parameter

(Other choices can be made!!)

Recall
$$T^{\nu}_{(\alpha)\mu} = (\rho_{\alpha} + p_{\alpha})u_{\mu}u^{\nu} + p_{\alpha}\delta^{\nu}_{\mu}$$
 where $u_{\mu} = (-a, 0, 0, 0)$ and $w_{\alpha} \equiv p_{\alpha}/\rho_{\alpha}$.

III - Background

Conservation equations $\dot{\rho}_d + 3\mathcal{H}\rho_d(1+w_d) = -3\mathcal{H}\lambda\rho_d$ $\dot{\rho}_c + 3\mathcal{H}\rho_c = +3\mathcal{H}\lambda\rho_d$

•
$$\lambda < 0$$
: DM \longrightarrow DE

• $\lambda > 0$: DE \longrightarrow DM

/10

IV - Perturbations

Linear perturbations in synchronous gauge

$$\begin{aligned} \dot{\delta}_{c} &= -(kv_{c} + \dot{h}/2) + 3\mathcal{H}\lambda(\delta_{d} - \delta_{c})\rho_{d}/\rho_{c}, \\ \dot{v}_{c} &= -\mathcal{H}v_{c}(1 + \lambda\rho_{d}/\rho_{c}), \\ \dot{\delta}_{d} &= -(1 + w)(kv_{c} + \dot{h}/2) \\ &+ 3\mathcal{H}[(w - c_{e}^{2}) - 3\mathcal{H}(c_{e}^{2} - c_{a}^{2})(1 + w + \lambda)v_{d}/k], \\ \dot{v}_{d} &= -\mathcal{H}(1 - 3c_{e}^{2})v_{d} + \frac{3\mathcal{H}}{1 + w}(1 + c_{e}^{2})\lambda v_{d} + kc_{e}^{2}\frac{\delta_{d}}{1 + w}. \end{aligned}$$

CAMB, CLASS, CMBFAST etc.

V - Modified CAMB

We use a modified version of $CAMB^{\dagger}$ to solve these equations.

Photometric Galaxy Survey

Photometric Galaxy Survey High redshift

Standard approach: split the data into redshift bins and use $\omega(\theta)$ or C_ℓ .

Standard approach: split the data into redshift bins and use $\omega(\theta)$ or C_ℓ .

$$C_{\ell,Limber} = \int \mathrm{d}z \phi^2(z) P\left(\frac{\ell+1/2}{r(z)}\right) \frac{1}{r^2(z)}.$$

VI - Angular Matter Power Spectrum

⁸/₁₀

VII - Fisher Information Matrix

Assuming a Gaussian likelihood, the Fisher matrix elements are given by

$$\mathcal{F}_{\alpha\beta} = \sum_{i} \frac{1}{\sigma_i^2} \frac{\partial X_i}{\partial \theta_{\alpha}} \frac{\partial X_i}{\partial \theta_{\beta}} \qquad \qquad \underbrace{\begin{array}{c} X_i \rightsquigarrow C_\ell \\ \hline \lambda_{fid} = 0 \text{ and } w_{fid} = -1.0001 \end{array}}_{\lambda_{fid} = 0 \text{ and } w_{fid} = -1.0001 \text{ for } \lambda_{fid} = 0 \text{ and } w_{fid} = -1.0001 \text{ for } \lambda_{fid} = 0 \text{ and } w_{fid} = -1.0001 \text{ for } \lambda_{fid} = 0 \text{ for } \lambda_$$

The variance in the C_{ℓ} 's can be estimated as $\sigma_{\ell}^2 \approx \frac{2 C_{\ell}^2}{f_{sky}(2\ell+1)}$. For DES, $f_{sky} \sim 1/8$.

VII - Fisher Information Matrix

 $\mathcal{F}_{\alpha\beta}$

Assuming a Gaussian likelihood, the Fisher matrix elements are given by

$$= \sum_{i} \frac{1}{\sigma_i^2} \frac{\partial X_i}{\partial \theta_{\alpha}} \frac{\partial X_i}{\partial \theta_{\beta}} \qquad \qquad \underbrace{ \begin{array}{c} X_i \rightsquigarrow C_\ell \\ \hline \lambda_{fid} = 0 \text{ and } w_{fid} = -1.0001 \end{array}}_{\lambda_{fid} = 0 \text{ and } w_{fid} = -1.0001 \text{ }$$

-0.94

The variance in the C_{ℓ} 's can be estimated as $\sigma_{\ell}^2 \approx \frac{2 C_{\ell}^2}{f_{sky}(2\ell+1)}$. For DES, $f_{sky} \sim 1/8$.

Next

- All parameters
- Beyond Limber
- Redshift-space distortions

- Photo-z error
- More redshift bins
- Binning in ℓ

Next

- All parameters
- Beyond Limber
- Redshift-space distortions

- Photo-z error
- More redshift bins
- Binning in ℓ

Data from first year of observations of Dark Energy Survey

Next

- All parameters
- Beyond Limber
- Redshift-space distortions

- Photo-z error
- More redshift bins
- Binning in ℓ

Data from first year of observations of Dark Energy Survey

Thank you!

DARK ENERGY SURVEY

