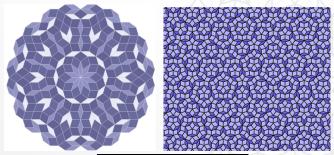
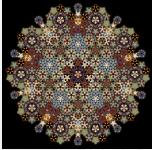
Supersymmetric Many-Body Systems from Partial Symmetries - Scrambling and Localization -

<u>Daniel Teixeira</u>*, Diego Trancanelli*, Pramod Padmanabhan*, Soo-Jong Rey*

* University of São Paulo, Brazil* Institute for Basic Sciences, Korea

What do these pictures have in common?





Daniel Teixeira dteixeira@usp.br

Supersymmetric Many-Body Systems from Partial Symmetries

11

Daniel Teixeira dteixeira@usp.br

Quasicrystals: described by inverse semigroups!

Quasicrystals: described by inverse semigroups!

Our motivation: use them to realize **supersymmetry**.

Daniel Teixeira dteixeira@usp.br

Definition of inverse semigroup S = (S, *):

$$\forall x \in S, \exists y \in S \text{ such that } \begin{cases} x * y * x = x \\ y * x * y = y \end{cases}$$

Types of inverse semigroups we consider...

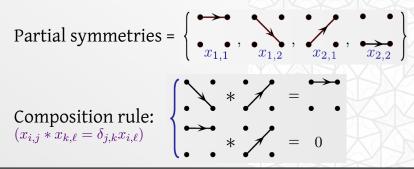
 $\overline{\mathcal{S}_p^n}$

Definition of inverse semigroup S = (S, *):

$$\forall x \in S, \exists y \in S \text{ such that } \begin{cases} x * y * x = x \\ y * x * y = y \end{cases}$$

Types of inverse semigroups we consider...

Example: S_1^2



Daniel Teixeira dteixeira@usp.br

Supersymmetric Quantum Mechanics with Partial Symmetries

Focus on S_1^3 . The Hilbert space will be $\mathcal{H}(S_1^3) = \operatorname{span}\{x_{i,j}\}_{i,j=1}^3$.

To construct supersymmetry algebra, define the supercharges as

$$q = \frac{1}{\sqrt{2}}(x_{1,2} + x_{1,3}),$$

$$q^{\dagger} = \frac{1}{\sqrt{2}}(x_{2,1} + x_{3,1}).$$

Then,
$$q^2 = q^{\dagger 2} = 0$$
 and

$$H = \{q, q^{\dagger}\}.$$

Supersymmetric many-body systems on a chain

Fill lattice sites with the supercharge q.

Define a "global" supercharge Q as some combination of the q_i s.

Supersymmetric many-body systems on a chain

Fill lattice sites with the supercharge q.

Define a "global" supercharge Q as some combination of the q_i s.

Prototype:
$$Q = \prod_{i} J_{i}q_{i}, \quad H = \{Q, Q^{\dagger}\},$$

where the J_{i} s are random variables.

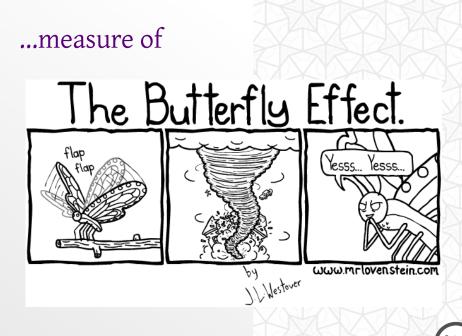
What do these models have in common?

Scrambling

How does quantum information spread across the degrees of freedom of the system?

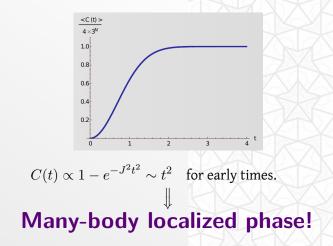
Probing scrambling...

 $C(t) = \langle [W(t), V(0)]^{\dagger} [W(t), V(0)] \rangle_{\beta}$



Daniel Teixeira dteixeira@usp.br

Phase	$\mathbf{C}(\mathbf{t})$	Scrambling
Thermal	Exponential growth	Fast
Many-body localized (MBL)	Power law growth	Slow
Anderson localized	Constant	None



Daniel Teixeira dteixeira@usp.br

Two main results:

(1) We realize supersymmetry algebra using partial symmetries and show how to generate many-body Hamiltonians within this set up.

(2) As an application, we constructed a toy model exhibiting a many-body localized phase which is supersymmetric.

More details... arXiv:1702.02091

