

"It from Qubit": New Collision of Ideas

"It from Qubit": New Collision of Ideas

"fiolography"

Quantum

 GravityQuantum Information Theory

"It from Qubit": New Corizoion of Ideas

"fiolography"

Quantum

 GravityQuantum Information Theory

"It from Qubit": New Collision of Ideas

"fiolography"

Quantum

 GravityQuantum Information Theory

Einstein:

Gravity? It's all about geometry!

General Relativity is the geometric arena for physics on very large scales: planets, stars, galaxies, cosmology

Einstein:

Gravity? It's all about geometry!

Spacetime moves from simply stage for physical phenomena, to being both the stage and an active player in the dynamics

General Relativity + Quantum Theory = Quantum Gravity?

General Relativity + Quantum Theory = Quantum Gravity?

- quantum fluctuations become manifest at small scales e.g., magnetic moment of the electron, $\mu_{e}=g e \hbar / 4 m_{e}$, with $g \approx 2$ but modified by quantum fluctuations

$$
\begin{aligned}
& g_{\text {theory }}=2.0023193043070 \\
& \qquad\left|\frac{\mu_{\text {theory }}-\mu_{\text {experiment }}}{\mu_{\text {experiment }}}\right| \leq 10^{-10}
\end{aligned}
$$

General Relativity + Quantum Theory = Quantum Gravity?

- spacetime geometry exhibits strong fluctuations when examined on very short distance scales
- how do we make sense of spacetime framework?

General Relativity + Quantum Theory = Quantum Gravity?

- spacetime geometry exhibits strong fluctuations when examined on very short distance scales
- how do we make sense of spacetime framework?

modify geometry at short distances
modify spectrum at short distances

"It from Qubit": New Collision of Ideas

"folography"

Quantum

Gravity

Quantum Information Theory

Quantum Entanglement

- different subsystems are correlated through global state of full system
Einstein-Podolsky-Rosen Paradox:
- polarizations of pair of photons connected, no matter how far apart they travel
"spukhafte Fernwirkung" = spooky action at a distance

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)
$$

Quantum Entanglement

- different subsystems are correlated through global state of full system
Einstein-Podolsky-Rosen Paradox:
- polarizations of pair of photons connected, no matter how far apart they travel
"spukhafte Fernwirkung" = spooky action at a distance

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)
$$

Quantum Information: entanglement becomes a resource for (ultra)fast computations and (ultra)secure communications

Condensed Matter: key to "exotic" phases and phenomena, e.g., quantum Hall fluids, unconventional superconductors, quantum spin fluids,

Quantum Entanglement

- different subsystems are correlated through global state of full system
Einstein-Podolsky-Rosen Paradox:
- polarizations of pair of photons connected, no matter how far apart they travel
"spukhafte Fernwirkung" = spooky action at a distance

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)
$$

Quantum Information: entanglement becomes a resource for (ultra)fast computations and (ultra)secure communications

Condensed Matter: key to "exotic" phases and phenomena, e.g., quantum Hall fluids, unconventional superconductors, quantum spin fluids,

Quantum Fields \& Quantum Gravity

Entanglement Entropy in QFT

- general diagnostic to give a quantitative measure of entanglement using entropy to detect correlations between two subsystems
- in QFT, typically introduce a (smooth) boundary or entangling surface Σ which divides the space into two separate regions
- integrate out degrees of freedom in "outside" region
- remaining dof are described by a density matrix ρ_{A}
\longrightarrow calculate von Neumann entropy: $S_{E E}=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]$

Holography: AdS/CFT correspondence

Bulk: gravity with negative \wedge

Holographic Entanglement Entropy:

Holographic Entanglement Entropy:

- conjecture \longrightarrow many detailed consistency tests
(Ryu, Takayanagi, Hubeny, Rangamani, Headrick, Hung, Smolkin, RM, Faulkner, . . .)

Holographic Entanglement Entropy:

- conjecture \longrightarrow many detailed consistency tests
(Ryu, Takayanagi, Hubeny, Rangamani, Headrick, Hung, Smolkin, RM, Faulkner, . . .)
- 2013 proof (for static geometries)
- 2016 proof (for general geometries)
(Maldacena \& Lewkowycz)
(Dong, Lewkowycz \& Rangamani)

Holographic Entanglement Entropy:

- conjecture \longrightarrow many detailed consistency tests
(Ryu, Takayanagi, Hubeny, Rangamani, Headrick, Hung, Smolkin, RM, Faulkner, . . .)
- 2013 proof (for static geometries)
- 2016 proof (for general geometries)
(Maldacena \& Lewkowycz)
- holographic EE: fruitful forum for bulk-boundary dialogue

Holographic Entanglement Entropy:

- holographic EE teaches us lessons about QFTs, eg,
\longrightarrow diagnostic in RG flows and c-theorms, eg, F-theorem (Sinha \& RM,)
gravity/holography $+\mathrm{EE} \longrightarrow$ RG flows in (2+1)-dimensions

F-theorem: $\quad(F)_{U V} \geq(F)_{I R}$

Holographic Entanglement Entropy:

- holographic EE teaches us lessons about QFTs, eg,
\longrightarrow diagnostic in RG flows and c-theorms, eg, F-theorem (Sinha \& RM,) \longrightarrow geometric properties of entanglement entropy in QFT's
(Mezei, Perlmutter, Lewkowycz, Bueno, RM, Witczak-Krempa,)
\longrightarrow diagnostic for quantum quenches/phase transitions
(Lopez, Johnson, Balasubramanian, Bernamonti, Craps, Galli,)

Holographic Entanglement Entropy:

- holographic EE teaches us lessons about (quantum) gravity, eg,
\longrightarrow BH formula applies beyond black holes/horizons
\longrightarrow connectivity of spacetime requires entanglement

Holographic Entanglement Entropy:

- holographic EE teaches us lessons about (quantum) gravity, eg,
\longrightarrow BH formula applies beyond black holes/horizons
\longrightarrow connectivity of spacetime requires entanglement

Spacetime Geometry = Entanglement

Spacetime Geometry = Entanglement

\longrightarrow Bekenstein-Hawking formula: spacetime geometry encodes $S_{B H}$
\longrightarrow black hole entropy is entanglement entropy (Sorkin,)
\longrightarrow use BH formula for holographic entanglement entropy
(Ryu \& Takayanagi;)
\longrightarrow connectivity of spacetime requires entanglement (van Raamsdonk)
\longrightarrow spacetime entanglement conjecture (Bianchi \& RM)
\longrightarrow AdS spacetime as a tensor network (MERA) (Swingle, Vidal,)
\longrightarrow "ER = EPR" conjecture (Maldacena \& Susskind)
\longrightarrow hole-ographic spacetime (Balasubramanian, Chowdhury, Czech, de Boer \& Heller; RM, Rao \& Sugishita; Czech, Dong \& Sully;)

Spacetime Geometry = Entanglement

\longrightarrow Bekenstein-Hawking formula: spacetime geometry encodes $S_{B H}$
\longrightarrow black hole entropy is entanglement entropy (Sorkin,)
\longrightarrow use BH formula for holographic entanglement entropy
(Ryu \& Takayanagi;)
\longrightarrow connectivity of spacetime requires entanglement (van Raamsdonk)
\longrightarrow spacetime entanglement conjecture (Bianchi \& RM)
\longrightarrow AdS spacetime as a tensor network (MERA) (Swingle, Vidal,)
\longrightarrow "ER = EPR" conjecture (Maldacena \& Susskind)
\longrightarrow hole-ographic spacetime (Balasubramanian, Chowdhury, Czech, de B RM, Rao \& Sugishita; Czech, Dong

spacetime provides both the stage for physical phenomena and the agent which manifests gravitational dynamics

Gravitational Dynamics from Entanglement:

(Lashkari, McDermott \& Van Raamsdonk; Swingle \& Van Raamsdonk; Faulkner, Guica, Hartman, RM \& Van Raamsdonk)

- entanglement entropy: $\quad S\left(\rho_{A}\right)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
- make a small perturbation of state: $\quad \tilde{\rho}=\rho_{A}+\delta \rho$

Gravitational Dynamics from Entanglement:

(Lashkari, McDermott \& Van Raamsdonk; Swingle \& Van Raamsdonk; Faulkner, Guica, Hartman, RM \& Van Raamsdonk)

- entanglement entropy: $\quad S\left(\rho_{A}\right)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
- make a small perturbation of state: $\quad \tilde{\rho}=\rho_{A}+\delta \rho$

$$
\longrightarrow \delta S=-\operatorname{tr}\left(\delta \rho \log \rho_{A}\right)-\operatorname{tr}\left(\rho_{A} \rho_{A}^{-1} \delta \rho\right)+O\left(\delta \rho^{2}\right)
$$

Gravitational Dynamics from Entanglement:

(Lashkari, McDermott \& Van Raamsdonk; Swingle \& Van Raamsdonk; Faulkner, Guica, Hartman, RM \& Van Raamsdonk)

- entanglement entropy: $\quad S\left(\rho_{A}\right)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
- make a small perturbation of state: $\quad \tilde{\rho}=\rho_{A}+\delta \rho$

$$
\begin{array}{r}
\longrightarrow \delta S=-\operatorname{tr}\left(\delta \rho \log \rho_{A}\right)-\underbrace{\operatorname{tr}\left(\rho_{A} \rho_{A}^{-1} \delta \rho\right)}_{=\operatorname{Tr}(\delta \rho)=0}+O\left(\delta \rho^{2}\right) \\
=\operatorname{Tr}
\end{array}
$$

Gravitational Dynamics from Entanglement:

(Lashkari, McDermott \& Van Raamsdonk; Swingle \& Van Raamsdonk; Faulkner, Guica, Hartman, RM \& Van Raamsdonk)

- entanglement entropy: $\quad S\left(\rho_{A}\right)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
- make a small perturbation of state: $\quad \tilde{\rho}=\rho_{A}+\delta \rho$

$$
\begin{aligned}
\longrightarrow \delta S & =-\operatorname{tr}\left(\delta \rho \log \rho_{A}\right)-\underbrace{\operatorname{tr}\left(\rho_{A} \rho_{A}^{-1} \delta \rho\right)}+O\left(\delta \rho^{2}\right) \\
& =-\operatorname{tr}(\delta \rho \operatorname{Tr}(\delta \rho)=0
\end{aligned}
$$

Gravitational Dynamics from Entanglement:

(Lashkari, McDermott \& Van Raamsdonk; Swingle \& Van Raamsdonk; Faulkner, Guica, Hartman, RM \& Van Raamsdonk)

- entanglement entropy: $\quad S\left(\rho_{A}\right)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
- make a small perturbation of state: $\quad \tilde{\rho}=\rho_{A}+\delta \rho$

$$
\begin{aligned}
\longrightarrow \delta S & =-\operatorname{tr}\left(\delta \rho \log \rho_{A}\right)-\underbrace{\operatorname{tr}\left(\rho_{A} \rho_{A}^{-1} \delta \rho\right)}+O\left(\delta \rho^{2}\right) \\
& =-\operatorname{tr}\left(\delta \rho \log \rho_{A}\right)+O\left(\delta \rho^{2}\right)=0
\end{aligned}
$$

- modular (or entanglement) Hamiltonian:

$$
\rho_{A}=\exp \left(-H_{A}\right)
$$

Gravitational Dynamics from Entanglement:

(Lashkari, McDermott \& Van Raamsdonk; Swingle \& Van Raamsdonk; Faulkner, Guica, Hartman, RM \& Van Raamsdonk)

- entanglement entropy: $\quad S\left(\rho_{A}\right)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
- make a small perturbation of state: $\quad \tilde{\rho}=\rho_{A}+\delta \rho$

$$
\begin{aligned}
& \longrightarrow \delta S=-\operatorname{tr}\left(\delta \rho \log \rho_{A}\right)-\underbrace{\operatorname{tr}\left(\rho_{A} \rho_{A}^{-1} \delta \rho\right)}+O\left(\delta \rho^{2}\right) \\
&=-\operatorname{tr}(\delta \rho \log (\delta \rho)=0 \\
&\left.\rho_{A}\right)+O\left(\delta \rho^{2}\right)
\end{aligned}
$$

- modular (or entanglement) Hamiltonian: $\rho_{A}=\exp \left(-H_{A}\right)$
(Blanco, Casini, Hung \& RM)

$$
\delta S_{A}=\delta\left\langle H_{A}\right\rangle
$$

" $1^{\text {st }}$ law" of entanglement entropy

Gravitational Dynamics from Entanglement:

(Lashkari, McDermott \& Van Raamsdonk; Swingle \& Van Raamsdonk; Faulkner, Guica, Hartman, RM \& Van Raamsdonk)

- entanglement entropy: $\quad S\left(\rho_{A}\right)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$
- make a small perturbation of state: $\quad \tilde{\rho}=\rho_{A}+\delta \rho$

$$
\begin{aligned}
\longrightarrow \delta S & =-\operatorname{tr}\left(\delta \rho \log \rho_{A}\right)-\underbrace{\operatorname{tr}\left(\rho_{A} \rho_{A}^{-1} \delta \rho\right)}+O\left(\delta \rho^{2}\right) \\
& =-\operatorname{tr}(\delta \rho \operatorname{Tr}(\delta \rho)=0
\end{aligned}
$$

- modular (or entanglement) Hamiltonian: $\quad \rho_{A}=\exp \left(-H_{A}\right)$
(Blanco, Casini, Hung \& RM)

$$
\begin{gathered}
\delta S_{A}=\delta\left\langle H_{A}\right\rangle \\
\text { "1st law" of entanglement entropy }
\end{gathered}
$$

- this is the $1^{\text {st }}$ law for thermal state:

$$
\rho_{A}=\exp (-H / T)
$$

"1st law" of entanglement entropy: $\quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$

- generally H_{A} "nonlocal mess" and flow is not geometric

$$
H_{A}=\int d^{d-1} x \gamma_{1}^{\mu \nu}(x) T_{\mu \nu}+\int d^{d-1} x \int d^{d-1} y \gamma_{2}^{\mu \nu ; \rho \sigma}(x, y) T_{\mu \nu} T_{\rho \sigma}+\cdots
$$

\longrightarrow hence usefulness of first law is very limited, in general
"1 $1^{\text {st law" of entanglement entropy: }} \quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$

- generally H_{A} "nonlocal mess" and flow is not geometric
$H_{A}=\int d^{d-1} x \gamma_{1}^{\mu \nu}(x) T_{\mu \nu}+\int d^{d-1} x \int d^{d-1} y \gamma_{2}^{\mu \nu ; \rho \sigma}(x, y) T_{\mu \nu} T_{\rho \sigma}+\cdots$
\longrightarrow hence usefulness of first law is very limited, in general
- famous exception: Rindler wedge
- any QFT in Minkowski vacuum; choose $\Sigma=(\mathrm{x}=0, \mathrm{t}=0)$

$$
\begin{aligned}
H_{A} & =2 \pi K \longleftarrow \text { boost generator } \\
& =2 \pi \int_{A(x>0)} d^{d-2} y d x\left[x T_{t t}\right]+c^{\prime}
\end{aligned}
$$

$$
\frac{\sum_{\mathbf{B}}^{\leftarrow}}{\mathbf{A}}
$$

- by causality, ρ_{A} and H_{A} describe physics throughout domain of dependence \mathcal{D}
(Bisognano \& Wichmann; Unruh)
"1 $1^{\text {st law" of entanglement entropy: }} \quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$
- generally H_{A} "nonlocal mess" and flow is not geometric
$H_{A}=\int d^{d-1} x \gamma_{1}^{\mu \nu}(x) T_{\mu \nu}+\int d^{d-1} x \int d^{d-1} y \gamma_{2}^{\mu \nu ; \rho \sigma}(x, y) T_{\mu \nu} T_{\rho \sigma}+\cdots$
\longrightarrow hence usefulness of first law is very limited, in general
- famous exception: Rindler wedge
- any QFT in Minkowski vacuum; choose $\Sigma=(\mathrm{x}=0, \mathrm{t}=0)$

$$
\begin{aligned}
H_{A} & =2 \pi K \longleftarrow \text { boost generator } \\
& =2 \pi \int_{A(x>0)} d^{d-2} y d x\left[x T_{t t}\right]+c^{\prime}
\end{aligned}
$$

- by causality, ρ_{A} and H_{A} describe physics throughout domain of dependence \mathcal{D}; eg, generate boost flows (Bisognano \& Wichmann; Unruh)
"1 ${ }^{\text {st law" }}$ of entanglement entropy: $\quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$
- another exception: CFT in vacuum of d-dim. flat space and entangling surface which is S^{d-2} with radius R

$$
H_{A}=2 \pi \int_{A} d^{d-1} y \frac{R^{2}-|\vec{y}|^{2}}{2 R} T_{t t}(\vec{y})+c^{\prime}
$$

"1 ${ }^{\text {st law" }}$ of entanglement entropy: $\quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$

- another exception: CFT in vacuum of d-dim. flat space and entangling surface which is S^{d-2} with radius R

"1st law" of entanglement entropy: $\quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$
- H_{A} has simply form for CFT and spherical entangling surface:

$$
H_{A}=2 \pi \int_{A} d^{d-1} y \frac{R^{2}-|\vec{y}|^{2}}{2 R} T_{t t}(\vec{y})+c^{\prime}
$$

- holographic realization:

"1st law" of entanglement entropy: $\quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$
- H_{A} has simply form for CFT and spherical entangling surface:

$$
H_{A}=2 \pi \int_{A} d^{d-1} y \frac{R^{2}-|\vec{y}|^{2}}{2 R} T_{t t}(\vec{y})+c^{\prime}
$$

- holographic realization:
$\partial(A d S)$

- apply $1^{\text {st }}$ law for spheres of all sizes, positions and in all frames:
$1^{\text {st }}$ law of S_{EE}

bulk geometry satisfies linearized Einstein eq's
"1 ${ }^{\text {st law" }}$ of entanglement entropy: $\quad \delta S_{A}=\delta\left\langle H_{A}\right\rangle$
- H_{A} has simply form for CFT and spherical entangling surface:

$$
H_{A}=2 \pi \int_{A} d^{d-1} y \frac{R^{2}-|\vec{y}|^{2}}{2 R} T_{t t}(\vec{y})+c^{\prime}
$$

- holographic realization:

$$
\partial(A d S)
$$

entanglement

spacetive provides both the stage for physical phenomena and the agent which manifests gravitational dynamics

- apply $1^{\text {st }}$ law for spheres of all sizes, positions and in all frames:
$1^{\text {st }}$ law of S_{EE}

bulk geometry satisfies
linearized Einstein eq's

Holographic Entanglement Entropy:

- holographic EE teaches us lessons about (quantum) gravity, eg,
\longrightarrow BH formula applies beyond black holes/horizons
\longrightarrow connectivity of spacetime requires entanglement

Spacetime Geometry = Entanglement

Holographic Entanglement Entropy:

- holographic EE teaches us lessons about (quantum) gravity, eg,
\longrightarrow BH formula applies beyond black holes/horizons
\longrightarrow connectivity of spacetime requires entanglement

Spacetime Geometry = Entanglement

Holographic Entanglement Entropy:

- holographic EE teaches us lessons about (quantum) gravity, eg,
\longrightarrow BH formula applies beyond black holes/horizons
\longrightarrow connectivity of spacetime requires entanglement

Spacetime Geometry = Entanglement

Susskind: Entanglement ${ }^{\wedge}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{1}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{\wedge}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

$$
|\mathrm{TFD}\rangle \simeq \sum_{\alpha} e^{-E_{\alpha} /(2 T)}\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
$$

- pure state: $S_{E E}=0$

Susskind: Entanglement ${ }^{\wedge}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

$$
|\mathrm{TFD}\rangle \simeq \sum_{\alpha} e^{-E_{\alpha} /(2 T)}\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
$$

- pure state: $S_{E E}=0$

$$
\begin{aligned}
\rho_{R} & =\operatorname{Tr}_{L}|\mathrm{TFD}\rangle\langle\mathrm{TFD}| \\
& \simeq \sum_{\alpha} e^{-E_{\alpha} / T}\left|E_{\alpha}\right\rangle_{R}\left\langle\left. E_{\alpha}\right|_{R}\right.
\end{aligned}
$$

- mixed state: $S_{E E}={ }^{A_{H}} / 4 G$

Susskind: Entanglement ${ }^{\wedge}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

$$
|\mathrm{TFD}\rangle \simeq \sum_{\alpha} e^{-E_{\alpha} /(2 T)}\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
$$

- pure state: $S_{E E}=0$

$$
\begin{aligned}
\rho_{R} & =\operatorname{Tr}_{L}|\mathrm{TFD}\rangle\langle\mathrm{TFD}| \\
& \simeq \sum_{\alpha} e^{-E_{\alpha} / T}\left|E_{\alpha}\right\rangle_{R}\left\langle\left. E_{\alpha}\right|_{R}\right.
\end{aligned}
$$

- mixed state: $S_{E E}=A_{H} / 4 G$

Susskind: Entanglement ${ }^{1}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{\wedge}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{\wedge}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{1}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{1}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{1}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{1}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Complexity?

- recall $S_{E E}$ only probes the eigenvalues of the density matrix

$$
S_{E E}=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum \lambda_{i} \log \lambda_{i}
$$

Complexity?

- recall $S_{E E}$ only probes the eigenvalues of the density matrix

$$
S_{E E}=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum \lambda_{i} \log \lambda_{i}
$$

- would like a new probe "sensitive to phases"

$$
|\mathrm{TFD}\rangle \simeq \sum_{\alpha} e^{-E_{\alpha} /(2 T)-i E_{\alpha}\left(t_{L}+t_{R}\right)}\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
\begin{array}{ll}
\qquad|\psi\rangle=U\left|\psi_{0}\right\rangle \\
\text { unitary operator } & \underbrace{2} \text { simple reference state } \\
\begin{array}{c}
\text { built from set of } \\
\text { simple gates }
\end{array} & \text { eg, }|00000 \cdots 0\rangle
\end{array}
$$

Toffoli gate

Phase-shift gate

Hadamard gate

$$
|a\rangle-H \quad-\frac{1}{\sqrt{2}}|0\rangle+\frac{(-1)^{a}}{\sqrt{2}}|1\rangle
$$

Erasure gate

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
\begin{array}{ll}
\qquad \psi\rangle=U\left|\psi_{0}\right\rangle \\
\begin{array}{c}
\text { unitary operator } \\
\text { built from set of } \\
\text { simple gates }
\end{array} & \text { eg, }|00000 \cdots 0\rangle
\end{array}
$$

tolerance: $||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \cdot \varepsilon$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
\qquad \underbrace{U\left|\psi_{0}\right\rangle}_{\begin{array}{c}
\text { unitary operator } \\
\text { built from set of } \\
\text { simple gates }
\end{array}}
$$

tolerance: $||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \cdot \varepsilon$

- complexity = minimum number of gates required to prepare the desired state

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

unitary operator \smile simple reference state built from set of eg, $|00000 \cdots 0\rangle$ simple gates
tolerance: $||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \cdot \varepsilon$

- complexity = minimum number of gates required to prepare the desired state
- does the answer depend on the choices?? YES!!
- compare to "circuit depth" for spin chain

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
\begin{array}{ll}
\qquad|\psi\rangle=U\left|\psi_{0}\right\rangle \\
\text { unitary operator } \\
\begin{array}{c}
\text { built from set of } \\
\text { simple gates }
\end{array} & \text { eg, }|00000 \cdots 0\rangle
\end{array}
$$

tolerance: $||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \cdot \varepsilon$

- complexity = minimum number of gates required to prepare the desired state
- does the answer depend on the choices?? YES!!
- but what does this really mean in quantum field theory? ???

Susskind: Entanglement ${ }^{1}$ is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

A Tale of Two Dualities: Holographic Complexity

Complexity $=$ Volume
Complexity $=$ Action

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

$$
\mathcal{C}_{\mathrm{A}}(\Sigma)=\frac{I_{\mathrm{WDW}}}{\pi \hbar}
$$

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind \& Zhao

A Tale of Two Dualities: Holographic Complexity

Complexity $=$ Volume
Complexity $=$ Action

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

$$
\mathcal{C}_{\mathrm{A}}(\Sigma)=\frac{I_{\mathrm{WDW}}}{\pi \hbar}
$$

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind \& Zhao

A Tale of Two Dualities: Holographic Complexity

Complexity $=$ Volume
Complexity $=$ Action

$$
\left.\frac{d \mathcal{C}_{\mathrm{V}}}{d t}\right|_{t \rightarrow \infty}=\frac{8 \pi}{d-1} M \quad \text { (planar) }
$$

$$
\left.\frac{d \mathcal{C}_{\mathrm{A}}}{d t}\right|_{t \rightarrow \infty}=\frac{2 M}{\pi}
$$

(universal; Lloyd bound)

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind \& Zhao

Complexity = Action:

Wheeler-DeWitt patch:
domain of dependence of Cauchy surface ending on boundary time slice

Complexity = Action:

Wheeler-DeWitt patch:
domain of dependence of Cauchy surface ending on boundary time slice

Complexity = Action:

- gravitational action:

$$
I=\frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right)
$$

Complexity = Action:

- gravitational action:

$$
I=\frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right)
$$

- well-defined action principle requires boundary terms

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& \mathrm{eg}, \quad-\int_{\mathcal{M}}(\nabla \Phi)^{2}=\int_{\mathcal{M}} \Phi \nabla^{2} \Phi-\int_{\partial \mathcal{M}} \Phi \mathbf{n} \cdot \nabla \Phi
\end{aligned}
$$

- well-defined action principle requires boundary terms

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K \quad \text { Gibbons-Hawking-York } \\
& \text { eg, } \quad-\int_{\mathcal{M}}(\nabla \Phi)^{2}=\int_{\mathcal{M}} \Phi \nabla^{2} \Phi-\int_{\partial \mathcal{M}} \Phi \mathbf{n} \cdot \nabla \Phi
\end{aligned}
$$

- well-defined action principle requires boundary terms

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K \quad \text { Gibbons-Hawking-York } \\
& \text { eg, } \quad-\int_{\mathcal{M}}(\nabla \Phi)^{2}=\int_{\mathcal{M}} \Phi \nabla^{2} \Phi-\int_{\partial \mathcal{M}} \Phi \mathbf{n} \cdot \nabla \Phi
\end{aligned}
$$

- well-defined action principle requires boundary terms

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K \quad+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta
\end{aligned}
$$

- well-defined action principle requires boundary terms

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta \\
& \mathrm{e} \overline{\mathrm{~g}}, \frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{\underline{8 \pi G_{N}}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- well-defined action principle requires boundary terms

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{ } \bar{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a \\
& + \text { ?????? }
\end{aligned}
$$

- ambiguities: total derivatives, extra boundary terms,

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{ }-g\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{ } \bar{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a \\
& + \text { ?????? }
\end{aligned}
$$

- ambiguities: total derivatives, extra boundary terms,
\longrightarrow ambiguities in circuit complexity?

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{ } \bar{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu}$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{ }=g\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$

Aside: make choices without referring to particular metric/coordinates, which allow for meaningful comparison of different states/geometries

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{ }-g\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{ } \bar{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$
2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{c}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right|\end{array}\right.$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$
2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{cc}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right|\end{array} \longrightarrow \begin{array}{c}\text { addivity of grav. action: } \\ \boldsymbol{a}_{\mathbf{0}}=0\end{array}\right.$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$
2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{cc}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right| & \text { addivity of grav. action: } \\ \boldsymbol{a}_{\mathbf{0}}=0\end{array}\right.$
3) constant rescaling: $k^{\mu} \rightarrow \boldsymbol{\alpha} k^{\mu}$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G_{N}} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(R+\frac{d(d-1)}{L^{2}}\right) \\
& +\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}} d^{d} x \sqrt{|h|} K+\frac{1}{8 \pi G_{N}} \int_{\Sigma} d^{d-1} x \sqrt{\sigma} \eta \\
& -\frac{1}{8 \pi G_{N}} \int_{\mathcal{B}^{\prime}} d \lambda d^{d-1} \theta \sqrt{\gamma} \kappa+\frac{1}{8 \pi G_{N}} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$
2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{cc}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right|\end{array} \longrightarrow \begin{array}{c}\text { addivity of grav. action: } \\ \boldsymbol{a}_{\mathbf{0}}=0\end{array}\right.$
3) constant rescaling: $k^{\mu} \rightarrow \boldsymbol{\alpha} k^{\mu} \longrightarrow$
fix normalization asymptotically:

$$
\boldsymbol{k} \cdot \hat{\boldsymbol{t}}= \pm 1
$$

Luis Lehner, RCM, Eric Poisson \& Rafael Sorkin

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G} \int_{d^{d+1} \ldots /-}\left(\frac{d(d-1)}{}\right) \\
& \left.+\left.\frac{d \mathcal{C}_{\mathrm{A}}}{87}\right|_{t \rightarrow \infty}=\frac{2 M}{d t}\right)_{8 \pi G_{N}}^{\pi} \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$
2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{cc}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right|\end{array} \longrightarrow \begin{array}{c}\text { addivity of grav. action: } \\ \boldsymbol{a}_{\mathbf{0}}=0\end{array}\right.$
3) constant rescaling: $k^{\mu} \rightarrow \boldsymbol{\alpha} k^{\mu} \longrightarrow$
fix normalization asymptotically:

$$
\boldsymbol{k} \cdot \hat{\boldsymbol{t}}= \pm 1
$$

Complexity = Action:

- gravitational action:
- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$
2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{cc}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right|\end{array} \longrightarrow \begin{array}{c}\text { addivity of grav. action: } \\ \boldsymbol{a}_{\mathbf{0}}=0\end{array}\right.$
3) constant rescaling: $k^{\mu} \rightarrow \boldsymbol{\alpha} k^{\mu} \longrightarrow$
fix Meormalizzion asymputically:
$\boldsymbol{k} \cdot \hat{\boldsymbol{t}}= \pm 1$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \left.\frac{1}{16 \pi G} \int_{d^{d+1} \ldots, \mathcal{C}^{d}\left(\mathcal{C}_{R} d(d-1)\right.}\right) \\
& \left.+\left.\frac{d \mathcal{C}_{\mathrm{A}}}{87}\right|_{t \rightarrow \infty}=\frac{2 M}{d t}\right)_{8 \pi G_{N}}^{\pi} \\
& \int_{\Sigma^{\prime}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ affinely parameterize: $\boldsymbol{\kappa}=0$
2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{c}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right|\end{array} \longrightarrow \xrightarrow[\boldsymbol{a}_{\mathbf{0}}=0]{\substack{\text { addivity of grav. action. }}}\right.$
3) constant rescaling: $k^{\mu} \rightarrow \boldsymbol{\alpha} k^{\mu} \longrightarrow$
fixmormalizztion asymputically:
$k \cdot \hat{\boldsymbol{t}}= \pm 1$

Complexity = Action:

- gravitational action:

$$
\begin{aligned}
I= & \frac{1}{16 \pi G} \int_{d^{d+1} \ldots /=}\left(\mathcal{C}_{R} d(d-1)\right. \\
& \left.+\left.\frac{d \mathcal{C}_{\mathrm{A}}}{87}\right|_{t \rightarrow \infty}=\frac{2 M}{d t}\right)_{8 \pi G_{N}} \\
& -\frac{\Sigma_{\Sigma^{\prime}}}{8 \pi G_{N} J_{\mathcal{B}^{\prime}}} d^{d-1} x \sqrt{\sigma} a
\end{aligned}
$$

- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu}$

2) $\mathrm{a}=\mathbf{a}_{\mathbf{0}}+\varepsilon\left\{\begin{array}{c}\log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{n}_{2}\right| \\ \log \left|\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} / 2\right|\end{array} \longrightarrow \xrightarrow[\boldsymbol{a}_{\mathbf{0}}=0]{\text { addivity of grav. action. }}\right.$
3) constant rescaling: $k^{\mu} \rightarrow \boldsymbol{\alpha} k^{\mu} \longrightarrow$
fixmormalizztion asymputically:
$k \cdot \hat{\boldsymbol{t}}= \pm 1$

Complexity = Action:

- gravitational action:
- ambiguities:

1) $k^{v} \nabla_{v} k^{\mu}=\boldsymbol{\kappa} k^{\mu} \longrightarrow$ afimeiy parameterize. $\boldsymbol{n}-\boldsymbol{0}$ chen
Aside: make choices without referring to particular metric/coordinates, which allow for meaningful comparison of different states/geometries
2) constant rescaling: $k^{\mu} \rightarrow \boldsymbol{\alpha} k^{\mu} \longrightarrow$ TIXMOrmalizeion asympotically:
$\boldsymbol{k} \cdot \hat{\boldsymbol{t}}= \pm 1$

Holographic Complexity:

Complexity = Volume
Complexity $=$ Action

$$
\left.\frac{d \mathcal{C}_{\mathrm{V}}}{d t}\right|_{t \rightarrow \infty}=\frac{8 \pi}{d-1} M \quad \text { (planar) }
$$

$$
\left.\frac{d \mathcal{C}_{\mathrm{A}}}{d t}\right|_{t \rightarrow \infty}=\frac{2 M}{\pi}
$$

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind \& Zhao

Complexity of Formation:

Shira Chapman, Hugo Marrochio \& RCM

$$
|\mathrm{TFD}\rangle=Z^{-1 / 2} \sum_{\alpha} e^{-E_{\alpha} /(2 T)}\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
$$

Complexity of Formation:

Shira Chapman, Hugo Marrochio \& RCM

$$
|\mathrm{TFD}\rangle=Z^{-1 / 2} \sum_{\alpha} e^{-E_{\alpha} /(2 T)}\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
$$

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle)
$$

Complexity of Formation:

Shira Chapman, Hugo Marrochio \& RCM

$$
|\mathrm{TFD}\rangle=Z^{-1 / 2} \sum e^{-E_{\alpha} /(2 T)}\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
$$

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle)
$$

$\Delta \mathcal{C}_{A}$

$$
r_{\max } \quad r_{\max }
$$

Complexity of Formation:

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\begin{aligned}
& \Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle) \\
& \Delta \mathcal{C}_{A}=\frac{d-2}{d \pi} \cot \left(\frac{\pi}{d}\right) \underset{\uparrow}{S}+\cdots \\
& \text { thermal/ent. entropy }
\end{aligned}
$$

[^0]
Complexity of Formation:

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\begin{gathered}
\Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle) \\
\Delta \mathcal{C}_{A}=\underbrace{\frac{d-2}{d \pi}}_{\frac{d-2}{\pi^{2}}+\mathcal{O}(1 / d)} \cot \left(\frac{\pi}{d}\right) \\
\uparrow
\end{gathered}
$$

($d=$ boundary dimension $)$

Complexity of Formation:

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\begin{aligned}
& \Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle) \\
& \Delta \mathcal{C}_{A}=\underbrace{\frac{d-2}{d \pi} \cot \left(\frac{\pi}{d}\right)}{ }_{\uparrow}^{S}+\cdots \\
& \frac{d-2}{n^{2}}+\mathcal{O}(1 / d) \quad \text { thermal/ent. entropy }
\end{aligned}
$$

Complexity of Formation:

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\begin{aligned}
& \Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle) \\
& \Delta \mathcal{C}_{A}=\underbrace{\frac{d-2}{d \pi} \cot \left(\frac{\pi}{d}\right)} \underset{\uparrow}{S}+\cdots{ }_{\uparrow}^{\cdots} \\
& \frac{d-2}{\pi^{2}}+\mathcal{O}(1 / d) \\
& \Delta \mathcal{C}_{V}=4 \sqrt{\pi} \frac{(d-2) \Gamma\left(1+\frac{1}{d}\right)}{(d-1) \Gamma\left(\frac{1}{2}+\frac{1}{d}\right)} S+\cdots \\
& \xrightarrow{\longrightarrow} \\
& (d=\text { boundary dimension }) \quad 4+\mathcal{O}(1 / d)
\end{aligned}
$$

Holographic Complexity:

Complexity = Volume
Complexity $=$ Action

$$
\left.\frac{d \mathcal{C}_{\mathrm{V}}}{d t}\right|_{t \rightarrow \infty}=\frac{8 \pi}{d-1} M \quad \text { (planar) }
$$

$$
\left.\frac{d \mathcal{C}_{\mathrm{A}}}{d t}\right|_{t \rightarrow \infty}=\frac{2 M}{\pi}
$$

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind \& Zhao

Compare?

$$
\begin{gathered}
R_{\text {form }}=\frac{\Delta \mathcal{C}_{A}}{\Delta \mathcal{C}_{V}}=\frac{d-1}{4 \pi^{3 / 2}} \frac{\Gamma\left(1-\frac{1}{d}\right)}{\Gamma\left(\frac{1}{2}-\frac{1}{d}\right)} \simeq \frac{d}{4 \pi^{2}} \\
R_{\text {rate }}=\frac{d \mathcal{C}_{A} / d t}{d \mathcal{C}_{V} / d t}=\frac{d-1}{4 \pi^{2}} \quad \simeq \frac{d}{4 \pi^{2}} \\
R_{\text {rate }}-R_{\text {form }}=\frac{\log 2}{2 \pi^{2}}+\mathcal{O}(1 / d)
\end{gathered}
$$

Compare?

$$
\begin{aligned}
& R_{\text {form }}=\frac{\Delta \mathcal{C}_{A}}{\Delta \mathcal{C}_{V}}=\frac{d-1}{4 \pi^{3 / 2}} \frac{\Gamma\left(1-\frac{1}{d}\right)}{\Gamma\left(\frac{1}{2}-\frac{1}{d}\right)} \simeq \frac{d}{4 \pi^{2}} \\
& R_{\text {rate }}=\frac{d \mathcal{C}_{A} / d t}{d \mathcal{C}_{V} / d t}=\frac{d-1}{4 \pi^{2}} \quad \simeq \frac{d}{4 \pi^{2}}
\end{aligned}
$$

$$
R_{\mathrm{rate}}-R_{\mathrm{form}}=\frac{\log 2}{2 \pi^{2}}+\mathcal{O}(1 / d)
$$

($d=$ boundary dimension $)$

Compare?

$$
\begin{gathered}
R_{\text {form }}=\frac{\Delta \mathcal{C}_{A}}{\Delta \mathcal{C}_{V}}=\frac{d-1}{4 \pi^{3 / 2}} \frac{\Gamma\left(1-\frac{1}{d}\right)}{\Gamma\left(\frac{1}{2}-\frac{1}{d}\right)} \simeq \frac{d}{4 \pi^{2}} \\
R_{\text {rate }}=\frac{d \mathcal{C}_{A} / d t}{d \mathcal{C}_{V} / d t}=\frac{d-1}{4 \pi^{2}} \quad \simeq \frac{d}{4 \pi^{2}} \\
R_{\text {rate }}-R_{\text {form }}=\frac{\log 2}{2 \pi^{2}}+\mathcal{O}(1 / d)
\end{gathered}
$$

points to consistency of $\mathrm{C}=\mathrm{V}$ and $\mathrm{C}=\mathrm{A}$ dualities up to differences in microscopic rules, eg, gate set
($d=$ boundary dimension $)$

Complexity of Formation for $\mathrm{d}=\mathbf{2}$:

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\begin{gathered}
\Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle) \\
\Delta \mathcal{C}_{A}=\frac{d-2}{d \pi} \cot \left(\frac{\pi}{d}\right) S+\cdots \\
\text { leading term vanishes } \quad \rightarrow d=2 \\
\Delta \mathcal{C}_{V}=4 \sqrt{\pi} \frac{(d-2) \Gamma\left(1+\frac{1}{d}\right)}{(d-1) \Gamma\left(\frac{1}{2}+\frac{1}{d}\right)} S+\cdots \xrightarrow{\simeq} \simeq 0! \\
\\
d=2
\end{gathered}
$$

- actually holographic calculations apply for $d \geq 3$ (but still correct)

$$
(d=\text { boundary dimension })
$$

Complexity of Formation for $\mathrm{d}=\mathbf{2}$:

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle)
$$

- reconsider holographic calculations for 3D BTZ black hole:

$$
\Delta \mathcal{C}_{A}=-\frac{c}{3} \quad \Delta \mathcal{C}_{V}=+\frac{8 \pi}{3} c
$$

$c=$ central charge of boundary CFT

- perhaps related to BTZ black hole being locally AdS geometry

$$
(d=\text { boundary dimension })
$$

Complexity of Formation for $\mathrm{d}=\mathbf{2}$:

- additional complexity involved in forming thermofield double state compared to preparing two copies of vacuum state?

$$
\Delta \mathcal{C}=\mathcal{C}(|\mathrm{TFD}\rangle)-\mathcal{C}(|0\rangle \quad|0\rangle)
$$

- reconsider holographic calculations for 3D BTZ black hole:

$$
\begin{aligned}
\Delta \mathcal{C}_{A} & =-\frac{c}{3} \quad \Delta \mathcal{C}_{V}=+\frac{8 \pi}{3} c \\
& =0 \quad=0 \\
c & =\text { central charge of boundary } \mathrm{CFT}
\end{aligned}
$$

- perhaps related to BTZ black hole being locally AdS geometry

$$
(d=\text { boundary dimension })
$$

Complexity of Formation from MERA?

$$
\Delta \mathcal{C}=\mathcal{C}(T F D)-2 \mathcal{C}(v a c)=\left(k_{T}-2 k_{0}\right) S \underset{?}{\stackrel{?}{?} 0} ?
$$

(a) Thermofield double state
(b) Vacuum state

Holographic Complexity:

Complexity = Volume

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

Complexity $=$ Action

$$
\mathcal{C}_{\mathrm{A}}(\Sigma)=\frac{I_{\mathrm{WDW}}}{\pi \hbar}
$$

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind \& Zhao

Holographic Complexity:

Complexity = Volume

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

Complexity = Action

$$
\mathcal{C}_{\mathrm{A}}(\Sigma)=\frac{I_{\mathrm{WDW}}}{\pi \hbar}
$$

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind \& Zhao

Holographic Complexity:

Complexity = Volume

Complexity = Action

- UV divergences naturally associated with establishing correlations or entanglement down to arbitrarily small length scales

Holographic Complexity:

Complexity = Volume

Complexity = Action

- UV divergences naturally associated with establishing correlations or entanglement down to arbitrarily small length scales
- regulate volume/action with the introduction of UV regulator surface at large radius $\left(r_{\max }=L^{2} / \delta\right)$, as usual

Holographic Complexity:

- UV divergences naturally associated with establishing correlations down to arbitrarily small length scales
- regulate volume/action with the introduction of UV regulator surface at large radius $\left(r_{\max }=L^{2} / \delta\right)$, as usual

$$
\mathcal{C}_{V}(\Sigma)=\frac{L^{d-1}}{(d-1) G_{N}} \int_{\Sigma} d^{d-1} \sigma \sqrt{h}\left[\frac{1}{\delta^{d-1}}\right.
$$

$$
\left.-\frac{(d-1)}{2(d-2)(d-3) \delta^{d-3}}\left(\mathcal{R}_{a}^{a}-\frac{1}{2} \mathcal{R}-\frac{(d-2)^{2}}{(d-1)^{2}} K^{2}\right)+\cdots\right]
$$

- UV divergences appear as local integrals of geometric invariants (as with holographic entanglement entropy)

Holographic Complexity:

- UV divergences naturally associated with establishing correlations down to arbitrarily small length scales
- regulate volume/action with the introduction of UV regulator surface at large radius $\left(r_{\max }=L^{2} / \delta\right)$, as usual

$$
\begin{aligned}
\mathcal{C}_{V}(\Sigma) & =\frac{8 \pi^{\frac{d+2}{2}} \Gamma(d / 2)}{\Gamma(d+2)} C_{T} \int_{\Sigma} d^{d-1} \sigma \sqrt{h}\left[\frac{1}{\delta^{d-1}}\right. \\
& \left.-\frac{(d-1)}{2(d-2)(d-3) \delta^{d-3}}\left(\mathcal{R}_{a}^{a}-\frac{1}{2} \mathcal{R}-\frac{(d-2)^{2}}{(d-1)^{2}} K^{2}\right)+\cdots\right]
\end{aligned}
$$

- UV divergences appear as local integrals of geometric invariants (as with holographic entanglement entropy)

Holographic Complexity:

- UV divergences naturally associated with establishing correlations down to arbitrarily small length scales
- regulate volume/action with the introduction of UV regulator surface at large radius $\left(r_{\max }=L^{2} / \delta\right)$, as usual

$$
\begin{aligned}
\mathcal{C}_{V}(\Sigma) & =\frac{1}{\delta^{d-1}} \int_{\Sigma} d^{d-1} \sigma \sqrt{h} v_{0}(\mathcal{R}, K) \\
\mathcal{C}_{A}(\Sigma) & =\frac{1}{\delta^{d-1}} \int_{\Sigma} d^{d-1} \sigma \sqrt{h}\left[v_{1}(\mathcal{R}, K)+\log \left(\frac{L}{\alpha \delta}\right) v_{2}(\mathcal{R}, K)\right] \\
& \text { with }
\end{aligned}
$$

- UV divergences appear as local integrals of geometric invariants (as with holographic entanglement entropy)

Holographic Complexity:

- UV divergences naturally associated with establishing correlations down to arbitrarily small length scales
- regulate volume/action with the introduction of UV regulator surface at large radius $\left(r_{\max }=L^{2} / \delta\right)$, as usual

$$
\begin{aligned}
& \mathcal{C}_{V}(\Sigma)=\frac{1}{\delta^{d-1}} \int_{\Sigma} d^{d-1} \sigma \sqrt{h} v_{0}(\mathcal{R}, K) \\
& \mathcal{C}_{A}(\Sigma)=\frac{1}{\delta^{d-1}} \int_{\Sigma} d^{d-1} \sigma \sqrt{h}\left[v_{1}(\mathcal{R}, K)+\log ^{\text {normalization }}\left(\frac{L^{\swarrow}}{\alpha \delta}\right) v_{2}(\mathcal{R}, K)\right] \\
& v_{k}(\mathcal{R}, K)=\sum_{n=0}^{\left\lfloor\frac{d-1}{2}\right\rfloor} \sum_{i} c_{i, n}^{[k]}(d) \delta^{2 n}[\mathcal{R}, K]_{i}^{2 n} \\
& \text { with }
\end{aligned}
$$

- UV divergences appear as local integrals of geometric invariants (as with holographic entanglement entropy)

Holographic Complexity:

- UV divergences appear as local integrals of geometric invariants

$$
\mathcal{C}(\Sigma) \simeq c_{0} \mathcal{V}(\Sigma) / \delta^{d-1}+\cdots
$$

$$
0\rangle
$$

Holographic Complexity:

- UV divergences appear as local integrals of geometric invariants

$$
\mathcal{C}(\Sigma) \simeq c_{0} \mathcal{V}(\Sigma) / \delta^{d-1}+\cdots
$$

$$
\left.\Delta \psi_{0}\right\rangle \underbrace{\frac{t=\text { constant }}{\Delta C} \simeq 2 c_{0}\left(\sqrt{\Delta \ell^{2}-\Delta t^{2}}-\Delta \ell\right) V_{\text {trans }} / \delta^{d-1}+\cdots<0}_{\Delta \ell}
$$

Holographic Complexity:

- UV divergences appear as local integrals of geometric invariants

$$
\mathcal{C}(\Sigma) \simeq c_{0} \mathcal{V}(\Sigma) / \delta^{d-1}+\cdots
$$

Questions?

- What is "holographic complexity"?
$>$ QFT/path integral description of "complexity" in boundary CFT?
$>$ what is boundary dual of these gravitational observables?
- is there a privileged role for (states on) null Cauchy surfaces?
$>$ provide distinguished reference states?
- is there a "renormalized holographic complexity"?
$>$ what's it good for?; (EE vs mutual information versions of F)
- ambiguities? ambiguities? ambiguities?
$>$ connections between ambiguities in gravity and boundary?
- more boundary terms: higher codim. intersections; "complex" joint contributions; boundary "counterterms"
- why is complexity of formation positive?
$-\mathcal{C}_{A}$ contribution of spacetime singularity? • subregion complexity?

"It from Qubit": New Collision of Ideas

"folography"

Quantum

Gravity

Quantum Information Theory

"It from Qubit": New Collision of Ideas

http://www.perimeterinstitute.ca/it-qubit-summer-school it-qubit-summer-school-resources

Quantum Information Theory

[^0]: ($d=$ boundary dimension $)$

