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Einstein:

Gravity? It’s all about geometry!

ZERO CURVATURE POSITIVE CURVATURE NEGATIVE CURVATURE

General Relativity is the geometric arena for physics

on very large scales: planets, stars, galaxies, cosmology




Einstein:

Gravity? It’s all about geometry!

ZERO CURVATURE POSITIVE CURVATURE NEGATIVE CURVATURE

Spacetime moves from simply stage for physical phenomena,

to being both the stage and an active player in the dynamics




General Relativity + Quantum Theory = Quantum Gravity?

ZERO CURVATURE  POSITIVE CURVATURE  NEGATIVE CURVATURE



General Relativity + Quantum Theory = Quantum Gravity?

: ZERO CURVATURE POSITIVE CURVATURE NEGATIVE CURVATURE

» quantum fluctuations become manifest at small scales

e.g., magnetic moment of the electron, u. = geh/4m.,
with g = 2 but modified by quantum fluctuations

Jtheory = 2.0023193043070

Hineory — HMoxperiment ~10
i P <10

/uexperi ment



General Relativity + Quantum Theory = Quantum Gravity?

* Spacetime geometry exhibits strong fluctuations
when examined on very short distance scales

* how do we make sense of spacetime framework?



General Relativity + Quantum Theory = Quantum Gravity?

* Spacetime geometry exhibits strong fluctuations
when examined on very short distance scales

* how do we make sense of spacetime framework?

modify geometry
at short distances

modify spectrum
at short distances
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Quantum Entanglement

« different subsystems are correlated through
global state of full system

Einstein-Podolsky-Rosen Paradox:

* polarizations of pair of photons connected,
no matter how far apart they travel

“spukhafte Fernwirkung” = solerizes 3
spooky action at a distance {'/ ‘ g ﬁ"
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Einstein-Podolsky-Rosen Paradox:

* polarizations of pair of photons connected,
no matter how far apart they travel
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spooky action at a distance {'/JH \s"
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Quantum Information: entanglement becomes a resource for
(ultra)fast computations and (ultra)secure communications

Condensed Matter: key to “exotic” phases and phenomena,
e.g., quantum Hall fluids, unconventional superconductors,
guantum spin fluids, . . ..



Quantum Entanglement

« different subsystems are correlated through
global state of full system

Einstein-Podolsky-Rosen Paradox:

* polarizations of pair of photons connected,
no matter how far apart they travel

“spukhafte Fernwirkung” = st ‘o
Spooky action at a distance {'/JH ‘ ; G
1 Horizontally ﬁma?aed
vy = (110 +111)

Quantum Information: entanglement becomes a resource for
(ultra)fast computations and (ultra)secure communications

Condensed Matter: key to “exotic” phases and phenomena,
e.g., quantum Hall fluids, unconventional superconductors,
guantum spin fluids, . . ..

Quantum Fields & Quantum Gravity




Entanglement Entropy in QFT

 general diagnostic to give a quantitative measure of entanglement
using entropy to detect correlations between two subsystems

 in QFT, typically introduce a (smooth) boundary or entangling
surface 2. which divides the space into two separate regions
* integrate out degrees of freedom in “outside” region

* remaining dof are described by a density matrix pa
—> calculate von Neumann entropy: Szr = —1'r [pa log p4]

(t = constant) -




Holography: AdS/CFT correspondence

Boundary: quantum field theory
Bulk: gravity with negative A\ without intrinsic scales
In d+1 dimensions —> in d dimensions

anti-de Sitter
space

conformal
field theory

radius €——> energy

time (Maldacena ‘97)



(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

AdS boundary A
2 boundary
conformal field
theory
v

Bekenstein-
AdS bulk Hawking
spacetime formula
Ay
S(A) = ext —L



(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

AdS boundary A
2 boundary
conformal field
theory
V Bekenstein-
AdS bulk Hawking
spacetime formula
S(A) = ext Av -
ved 4G N

e conjecture ——> many detailed consistency tests
(Ryu, Takayanagi, Hubeny, Rangamani, Headrick, Hung, Smolkin, RM, Faulkner, .. .)
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(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

AdS boundary n
2 boundary
conformal field
theory
v

Bekenstein-
AdS bulk Hawking
spacetime formula
Ay
S(A) = ext —
ved 4G N

e conjecture ——> many detailed consistency tests
(Ryu, Takayanagi, Hubeny, Rangamani, Headrick, Hung, Smolkin, RM, Faulkner, .. .)

« 2013 proof (for static geometries) (Maldacena & Lewkowycz)
» 2016 proof (for general geometries) (Dong, Lewkowycz & Rangamani)

 holographic EE: fruitful forum for bulk-boundary dialogue
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AdS boundary n
2 boundary
conformal field
theory
v

Bekenstein-
AdS bulk Hawking
spacetime formula
Ay

A) — Av.
S(A) = ext =

* holographic EE teaches us lessons about QFTs, eg,
—> diagnostic in RG flows and c-theorms, eg, F-theorem (Sinha &RM, ...... )



gravity/holography + EE ——> RG flows in (2+1)-dimensions

F-theorem: (F); > (F);p



(Ryu & Takayanagi "06)
Holographic Entanglement Entropy:

AdS boundary n
2 boundary
conformal field
theory

V Bekenstein-
AdS bulk Hawking
spacetime formula
Ay

A) — Av.
S(A) = ext =

* holographic EE teaches us lessons about QFTs, eg,
—> diagnostic in RG flows and c-theorms, eg, F-theorem (Sinha &RM, ...... )

—> geometric properties of entanglement entropy in QFT’s
(Mezei, Perlmutter, Lewkowycz, Bueno, RM, Witczak-Krempa, ....)

—> diagnostic for quantum guenches/phase transitions
(Lopez, Johnson, Balasubramanian, Bernamonti, Craps, Galli, ....)
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Spacetime Geometry = Entanglement

—> Bekenstein-Hawking formula: spacetime geometry encodes Sg,
—> Dblack hole entropy is entanglement entropy (Sorkin, ....)

——> use BH formula for holographic entanglement entropy
(Ryu & Takayanagi; ....)

—> connectivity of spacetime requires entanglement (van Raamsdonk)
——> spacetime entanglement conjecture (Bianchi & RM)

—> AdS spacetime as a tensor network (MERA) (Swingle, Vidal, ....)
—> “ER = EPR” conjecture (Maldacena & Susskind)

—> hole-ographic spacetime (Balasubramanian, Chowdhury, Czech, de Boer & Heller;
RM, Rao & Sugishita; Czech, Dong & Sully; ....)
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Spacetime Geometry = Entanglement

—> Bekenstein-Hawking formula: spacetime geometry encodes Sg,
—> Dblack hole entropy is entanglement entropy (Sorkin, ....)

——> use BH formula for holographic entanglement entropy
(Ryu & Takayanagi; ....)

—> connectivity of spacetime requires entanglement (van Raamsdonk)
——> spacetime entanglement conjecture (Bianchi & RM)

—> AdS spacetime as a tensor network (MERA) (Swingle, Vidal, ....)
—> “ER = EPR” conjecture (Maldacena & Susskind)

—> hole-ographic spacetime (Balasubramanian, Chowdhury, Czech, de B
RM, Rao & Sugishita; Czech, Dong

3 ﬁg{’ u:
(e
p

spacetime provides both the stage for physical phenomena
and the agent which manifests gravitational dynamics
AAEE b NE AN U/



Gravitational Dynamics from Entanglement:

(Lashkari, McDermott & Van Raamsdonk; Swingle & Van Raamsdonk;
Faulkner, Guica, Hartman, RM & Van Raamsdonk)

* entanglement entropy:  S(p4) = —tr(palogpa)

* make a small perturbation of state: 0 = pa-+0p
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—> 05 = —tr(dplog pa) — tr(pa py 6p) + O(6p%)



Gravitational Dynamics from Entanglement:

(Lashkari, McDermott & Van Raamsdonk; Swingle & Van Raamsdonk;
Faulkner, Guica, Hartman, RM & Van Raamsdonk)

* entanglement entropy: S(pA) — —tr(pA log pA)
* make a small perturbation of state: 0 = pa-+0p

—> 08 = —tr(dplog pa) — tr(pa py 9p) + O(dp%)

':Tr(ép):O
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Gravitational Dynamics from Entanglement:

(Lashkari, McDermott & Van Raamsdonk; Swingle & Van Raamsdonk;
Faulkner, Guica, Hartman, RM & Van Raamsdonk)

* entanglement entropy:  S(p4) = —tr(palogpa)

* make a small perturbation of state: 0 = pa-+0p

—> 08 = —tr(dplog pa) — tr(pa py 9p) + O(dp%)

':Tr(ép):()

= —tr(dplog pa) + O(6p%)

* modular (or entanglement) Hamiltonian:  p, = exp(—H )
(Blanco, Casini, Hung & RM)

5S4 = S(H4)

“1st law” of entanglement entropy

* this is the 1% law for thermal state: ~ pa = exp(—H/T)



“Ist law” of entanglement entropy: 0S4 = (5<HA>

e generally H4 “nonlocal mess” and flow is not geometric

HA:/dd 133,71 ,uJI/—|_/dd 1 /dd 1y,y2 7/00 33 y)TuyTpg+°°'

—> hence usefulness of first law is very limited, in general



“Ist law” of entanglement entropy: 0S4 = (5<HA>

e generally H4 “nonlocal mess” and flow is not geometric

Hy = /dd_la: Vi (x) Ty + /dd_lx/dd_ly’yg’y;pg(a;, Y) T Tho + -

—> hence usefulness of first law is very limited, in general

* famous exception: Rindler wedge

* any QFT in Minkowski vacuum; choose X = (x=0,t = 0)

H 4 = 27K <— boost generator

:27'('/ dd_deZU [CE Ttt] —|—C, E:r
A(x>0) B A

* by causality, p4 and H 4 describe physics throughout

domain of dependence D
(Bisognano & Wichmann; Unruh)



“Ist law” of entanglement entropy: 0S4 = (5<HA>

e generally H4 “nonlocal mess” and flow is not geometric

Hy = /dd_la}’yiw(:c) T —I—/dd_lx/dd_lyfyg’y;pg(g;,y) Ty Tpo + -+

—> hence usefulness of first law is very limited, in general
* famous exception: Rindler wedge
* any QFT in Minkowski vacuum; choose X = (x=0,t = 0)

H 4 = 27K <— boost generator

:27'('/ dd_deZU [CE Ttt] —|—C,
A(z>0) B

At

* by causality, p4 and H 4 describe physics throughout

domain of dependence D ; eg, generate boost flows
(Bisognano & Wichmann; Unruh)



“Ist law” of entanglement entropy: 0S4 = (5<HA>

* another exception: CFT in vacuum of d-dim. flat space and entangling
surface which is S92 with radius R

RQ . 2
Hp =27 /ddly £l Ty (3) + ¢
) OR

(Casini, Huerta & RM;

D Hislop & Longo)

>\




“Ist law” of entanglement entropy: 0S4 = (5<HA>

* another exception: CFT in vacuum of d-dim. flat space and entangling
surface which is S92 with radius R

i1, — [91°
HAZQTF Ad 2R Ttt( )—|—C

(Casini, Huerta & RM;
Hislop & Longo)

* construct with conformal
transformation:

— 27r ds* T, K
A




“Istlaw” of entanglement entropy: §S4 = 6(Ha)

* H, has simply form for CFT and spherical entangling surface:

R2 472 .
Hy =21 / 1ty N 1) + ¢

o 2R

* holographic realization:

9(AdS)




“15tlaw” of entanglement entropy: §S4 = 6(Hy4)

* H, has simply form for CFT and spherical entangling surface:

R2 712 .
Hy =2m /dd_ly ] Ty () + ¢

o 2R

* holographic realization:
9(AdS)

* apply 15t law for spheres of all sizes, positions and in all frames:

15 law of S, “ bulk geometry satisfies
linearized Einstein eq’s



“Istlaw” of entanglement entropy: §S4 = 6(Ha)
* H, has simply form for CFT and spherical entangling surface:

R* — |y’
Hy=2m [d*!
A 7T/A Y R

T (§) + ¢

* holographic realization:
J(AdS)

en:anglem?n; -

spaeetinte provides both the stage for physical phenomena

and the agent which manifests gravitational dynamics
.

* apply 15t law for spheres of all sizes, positions and in all frames:

15 law of S, “ bulk geometry satisfies
linearized Einstein eq’s
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—> connedctivity of spacetime requires entanglement (van Raamsdonk)
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* recall Sy only probes the eigenvalues of the density matrix

Spw = —Tr[palogpal = =) A log\;



Complexity?
* recall Sy only probes the eigenvalues of the density matrix

Spw = —Tr[palogpal = =) A log\;

* would like a new probe “sensitive to phases”

'TFD) ~ Y " Fe/CT)=iBeliettn)| B ) | Ey) g
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Complexity:

e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular state?

e quantum circuit model:

¥) = Ulto)

unitary operator—J L simple reference state

built from set of e
| 8 100000 - - - 0)
simple gates
Toffoli gate Hadamard gate
) ) L
) { o) @) —H]— L0+ S
c) c&ab)
Phase-shift gate Ancillary gate Erasure gate

|a) P i |a) 0) ——10) o

Tr
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e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular state?

e quantum circuit model:

¥) = U lt)

unitary operator—J L simple reference state
built from set of €& 100000 - - - 0>

simple gates
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e compare to “circuit depth” for spin chain



Complexity:

e computational complexity: how difficult is it to implement a task? eg,
how difficult is it to prepare a particular state?

e quantum circuit model:

¥) = U lt)

unitary operator—J L simple reference state
built from set of €& 100000 - - - O>

simple gates

tolerance: | ‘Qp> — ‘¢>Target |2 - £

* complexity = minimum number of gates required to prepare
the desired state

* does the answer depend on the choices?? YES!!
* but what does this really mean in quantum field theory? ???
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* “to understand the rich geometric structures that exist behind
the horizon and which are predicted by general relativity.”
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A Tale of Two Dualities: Holographic Complexity

Complexity = Volume Complexity = Action
//—-'—-'-\~ /—““\‘
_ V(B) Iwpw

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind & Zhao
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Complexity = Volume Complexity = Action

iR 3 Pt

“O-plgy]  am-

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind & Zhao



A Tale of Two Dualities: Holographic Complexity

Complexity = Volume Complexity = Action

iR 3 Pt

dCV o oz M (planar) dCA o 2M
dt ltseo d—1 dt ltsoo
(d = boundary dimension) (universal; Lloyd bound)

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind & Zhao
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Complexity of Formation for d=2:

 additional complexity involved in forming thermofield double state
compared to preparing two copies of vacuum state?
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— 2
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e actually holographic calculations apply for d = 3 (but still correct)

(d = boundary dimension)
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 additional complexity involved in forming thermofield double state
compared to preparing two copies of vacuum state?

AC = C(|TFD)) - C(]0) ® |0))

* reconsider holographic calculations for 3D BTZ black hole:

ACA:—g ACy +8§c (NS vac)

=0 = (R vac)

¢ = central charge of boundary CFT

* perhaps related to BTZ black hole being locally AdS geometry

(d = boundary dimension)



Complexity of Formation from MERA?

L

W

L'=2L/p
TN

Ceg(TFD) ~ CpV T4}

=kr S
Ce_g(vac) ~ CrV T4 !
=ko S
[
AC =C(TFD) —2C(vac) = (kr —2ky) S _?2 O'_?

(a) Thermofield double state (b) Vacuum state
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e UV divergences naturally associated with establishing correlations
or entanglement down to arbitrarily small length scales
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Holographic Complexity:
» UV divergences naturally associated with establishing correlations
down to arbitrarily small length scales

* regulate volume/action with the introduction of UV regulator surface
at large radius (7,4, = L?/8), as usual

1 _
CV(E) — 5d—1 /E;dd 10- h 'UO(R, K) AdS scale
normalization
1 L
Ca(X) = T /zdd Lo vh [vl(R K) +log a5> va (R, K)]

from asymptotic joint
with Y Y c; 52n R K]Zn

* UV divergences appear as local integrals of geometric invariants
(as with holographic entanglement entropy)
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* UV divergences appear as local integrals of geometric invariants

C(X) ~ V()64 +...

t = constant 2
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Questions?

* What is “holographic complexity”?
» QFT/path integral description of “complexity” in boundary CFT?
» what is boundary dual of these gravitational observables?

* is there a privileged role for (states on) null Cauchy surfaces?
» provide distinguished reference states?

* is there a “renormalized holographic complexity”?
» what’s it good for?; (EE vs mutual information versions of F)

* ambiguities? ambiguities? ambiguities?
» connections between ambiguities in gravity and boundary?

* more boundary terms: higher codim. intersections; “complex” joint
contributions; boundary “counterterms”

* why is complexity of formation positive?

* C4 contribution of spacetime singularity? ¢ subregion complexity?
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“It from Qubit”: New Collision of Ideas

http://www.perimeterinstitute.ca/it-qubit-summer-school
/it-qubit-summer-school-resources

. Information
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