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General Relativity is the geometric arena for physics 

on very large scales: planets, stars, galaxies, cosmology 
 

Einstein: 

Gravity? It’s all about geometry! 

 
Spacetime moves from simply stage for physical phenomena, 
to being both the stage and an active player in the dynamics 

 



General Relativity + Quantum Theory = Quantum Gravity? 
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General Relativity + Quantum Theory = Quantum Gravity? 

• quantum fluctuations become manifest at small scales 

e.g., magnetic moment of the electron,                         , 

       with 𝑔 ≈ 2 but modified by quantum fluctuations 
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at short distances 

modify spectrum 
at short distances 

General Relativity + Quantum Theory = Quantum Gravity? 
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Quantum Fields & Quantum Gravity 



• in QFT, typically introduce a (smooth) boundary or entangling 

  surface      which divides the space into two separate regions 

• integrate out degrees of freedom in “outside” region 

• remaining dof are described by a density matrix 

A 

calculate von Neumann entropy: 

• general diagnostic to give a quantitative measure of entanglement 

  using entropy to detect correlations between two subsystems 

A 
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 Entanglement Entropy in QFT 



Bulk: gravity with negative Λ 

             in d+1 dimensions 

anti-de Sitter 

space 

Boundary: quantum field theory 

                without intrinsic scales 

                      in d dimensions 

conformal 

field theory 

“holography” 

Holography: AdS/CFT correspondence 

energy radius 
(Maldacena ‘97) 
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● 

(F)UV

gravity/holography + EE               RG flows in (2+1)-dimensions 

● 

● 

● 

(F)UV ¸ (F)IRF-theorem: 

C(R) =R@RS(R)¡S(R) A 
B 
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• holographic EE teaches us lessons about QFTs, eg,  

geometric properties of entanglement entropy in QFT’s  
                                   (Mezei, Perlmutter, Lewkowycz, Bueno, RM, Witczak-Krempa, ….) 

diagnostic for quantum quenches/phase transitions 

diagnostic in RG flows and c-theorms, eg, F-theorem   (Sinha & RM, ……) 

(Lopez, Johnson, Balasubramanian, Bernamonti, Craps, Galli, ….) 
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Bekenstein-Hawking formula: spacetime geometry encodes SBH 

hole-ographic spacetime 

spacetime provides both the stage for physical phenomena 
and the agent which manifests gravitational dynamics  
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• modular (or entanglement) Hamiltonian: 

½A = exp(¡H=T)• this is the 1st law for thermal state: 

Gravitational Dynamics from Entanglement: 
(Lashkari, McDermott & Van Raamsdonk; Swingle & Van Raamsdonk; 
                                   Faulkner, Guica, Hartman, RM & Van Raamsdonk) 
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Complexity? 

• recall 𝑆𝐸𝐸  only probes the eigenvalues of the density matrix 

SEE = ¡Tr [½A log ½A] =¡
X

¸i log¸i

• would like a new probe “sensitive to phases” 

jTFDi '
X

®

e¡E®=(2T )¡iE®(tL+tR)jE®iLjE®iR
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Complexity: 

• computational complexity: how difficult is it to implement a task? eg, 
   how difficult is it to prepare a particular state? 

• quantum circuit model: 

jÃi = U jÃ0i
simple reference state 
   eg, j00000 ¢ ¢ ¢0i

unitary operator 
built from set of  

simple gates 

tolerance: j jÃi ¡ jÃiTarget j2 · "

• complexity = minimum number of gates required to prepare 
                           the desired state 

• does the answer depend on the choices??  YES!! 

• but what does this really mean in quantum field theory? ??? 
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A Tale of Two Dualities: Holographic Complexity  

Complexity = Volume Complexity = Action 

Team Lenny, including Brown, Roberts, Swingle, Stanford, Susskind & Zhao 

(planar) 

(d= boundary dimension) (universal; Lloyd bound) 
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Wheeler-DeWitt patch:  
              domain of dependence of Cauchy surface ending on 
              boundary time slice 

Complexity = Action 

null boundaries 
null boundaries 

evaluate the action? 
what action?? 

Luis Lehner, RCM, Eric Poisson & Rafael Sorkin 
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 Aside: make choices without referring to particular metric/coordinates, 
  which allow for meaningful comparison of different states/geometries 
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Complexity of Formation for d=2: 

• additional complexity involved in forming thermofield double state 
   compared to preparing two copies of vacuum state? 
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' 0!
d= 2

' 0!
d= 2

leading term vanishes 

• actually holographic calculations apply for 𝑑 ≥ 3 (but still correct) 
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(d= boundary dimension)

• reconsider holographic calculations for 3D BTZ black hole: 
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¢CV = +
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• perhaps related to BTZ black hole being locally AdS geometry 

(NS vac) 

(R vac) = 0 = 0

𝒄 =  central charge of boundary CFT 



Complexity of Formation from MERA? 

Cc¡g(vac) ' CTV Td¡1

= k0 S

? ? 

? ? 
¢C = C(TFD)¡ 2C(vac) = (kT ¡ 2k0)S ¸ 0

Cc¡g(TFD) ' CTV Td¡1

= kT S
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Holographic Complexity: 

• UV divergences naturally associated with establishing correlations 
   down to arbitrarily small length scales 

• regulate volume/action with the introduction of UV regulator surface 
   at large radius (𝑟𝑚𝑎𝑥 = 𝐿2/𝛿), as usual 
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¸

• UV divergences appear as local integrals of geometric invariants 
   (as with holographic entanglement entropy) 
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• UV divergences appear as local integrals of geometric invariants 
   (as with holographic entanglement entropy) 
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   down to arbitrarily small length scales 

• regulate volume/action with the introduction of UV regulator surface 
   at large radius (𝑟𝑚𝑎𝑥 = 𝐿2/𝛿), as usual 

with  vk(R;K) =
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   down to arbitrarily small length scales 

• regulate volume/action with the introduction of UV regulator surface 
   at large radius (𝑟𝑚𝑎𝑥 = 𝐿2/𝛿), as usual 
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• UV divergences appear as local integrals of geometric invariants 
   (as with holographic entanglement entropy) 

AdS scale 

normalization 

from asymptotic joint 
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Holographic Complexity: 
• UV divergences appear as local integrals of geometric invariants 

C(§) ' c0 V(§)=±d¡1 + ¢ ¢ ¢

¢C ' 2c0 (
p
¢`2 ¡¢t2 ¡¢`)Vtrans=±d¡1 + ¢ ¢ ¢ < 0

C(§3) ' c1 Vtrans=±d¡2 + ¢ ¢ ¢



Questions? 
• What is “holographic complexity”? 

 QFT/path integral description of “complexity” in boundary CFT? 
 what is boundary dual of these gravitational observables? 

• ambiguities? ambiguities? ambiguities?  

• is there a privileged role for (states on) null Cauchy surfaces? 
  provide distinguished reference states? 

• is there a “renormalized holographic complexity”?  

• why is complexity of formation positive? 

  what’s it good for?; (EE vs mutual information versions of F)  

• subregion complexity? 

  connections between ambiguities in gravity and boundary? 

• more boundary terms: higher codim. intersections; “complex” joint 
     contributions; boundary “counterterms” 

•       contribution of spacetime singularity? CA
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