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Probem 1: This first problem is a series of exercises that will help you to become more familiar with

density matrices:

Evaluate the reduced density matrices, their eigenvalues and the entanglement entropy resulting when

the second photon is traced out of the two photon states introduced in the first lecture:

|ψ1〉 =
1√
2

(
|+−〉 − | −+〉

)
|ψ2〉 =

1

2

(
|+ +〉+ |+−〉 − | −+〉 − | − −〉

)
|ψ2〉 =

1

2

(
|+ +〉+ |+−〉 − | −+〉+ | − −〉

)
More generally, consider a global state of the form

|ψ〉 =
∑
i,j

αij |ij〉 where |ij〉 = |i〉 ⊗ |j〉

and |i〉 and |j〉 are orthonormal states in two separate Hilbert spaces (possibly of different dimensions).

The coefficients αij are complex numbers.

• Evaluate the reduced density matrix ρ that results when the second set of degrees of freedom

(the |j〉’s) are integrated out.

• Show that ρ† = ρ. Recall that this implies that the eigenvalues of ρ are real.

• Show that Tr[ρ] = 1 if the initial state was properly normalized, i.e., 〈ψ|ψ〉 = 1. Recall that this

implies the the eigenvalues sum to one, i.e.,
∑
λa = 1.

• With a bit more work, we can also show that the eigenvalues are also positive or zero. Assuming

the latter, show that Tr[ρ2] ≤ 1. Further show that the inequality is only saturated when one of

the eigenvalues is one, e.g., λ1 = 1, and the rest are zero. It follows that Tr[ρ2] = 1 if and only

if ρ describes a pure state.

• For any operator that acts only in the first Hilbert space, i.e., O ≡ O ⊗ 11, show that

〈ψ|O|ψ〉 = Tr[ρO] .

Probem 2: Carry out the calculation of the entanglement entropy in the ground state of two coupled

simple harmonic oscillators, which I very briefly discussed in the first lecture. Recall that Hamiltonian

was given by

H =
1

2

[
p2

1 + p2
2 + ω2(x2

1 + x2
2) + Ω2(x1 − x2)2

]
.
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Hence, you should find that the ground state wavefunction can be written as

Ψ(x1, x2) =
(ω+ω−)1/4

√
π

exp

[
−1

4
ω+(x1 + x2)2 − 1

4
ω−(x1 − x2)2

]
where ω+ = ω and ω− = (ω2 + 2Ω2)1/2.

Note that the full calculation can be found in Srednicki’s paper [1].

Consider repeating the calculation of the entanglement entropy but in the case where one of the normal

modes is in the first excited state.

For students needing a refresher on the solution of the simple harmonic oscillator in quantum mechan-

ics, they might consult: http://en.wikipedia.org/wiki/Quantum harmonic oscillator

Problem 3: In the first lecture, I mentioned that the previous calculation is readily extended to

a system of many coupled oscillators, e.g., a lattice description of a free scalar field theory. This

calculation was first discussed by Bombelli et al [2] and then again by Srednicki [1]. However, I will

refer you to a nice review of the calculation is section 2.2 of [3]. There the Hamiltonian is written as

H =
1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

φiKij φj .

(Actually they replace pi with φ̇i, as is standard in Lagrangian mechanics. Note that the mass of the

particles is 1.) The ground state wavefunction is then written as

Ψ(φi) =

(
det

W

π

)1/4

exp

[
−1

2
φT W φ

]
where W =

√
K.

Show that this formalism can be applied to describe the previous calculation for two coupled oscillators.

Show that your previous result for the entanglement entropy matches the general expression in eq. (42)

of [3].

Problem 4: Consider the scalar field action

I = −1

2

∫
ddx
√
−g
[
gµν∂µφ∂νφ+m2φ2 + ξ R(g)φ2

]
where R(g) is the Ricci scalar of the background metric gµν . Show that the action is invariant (up to

total derivatives, i.e., boundary terms) under local Weyl rescalings

gµν → e2ω(x)gµν , φ→ e−∆ω(x)φ with ∆ =
d− 2

2

if m = 0 and ξ = d−2
4(d−1) .

The stress tensor is defined as

Tµν = − 2√
−g

δI

δgµν
.
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Show that in the case where the mass and the coupling ξ have been tuned as above, that Tµµ =

gµνTµν = 0 if we use the equations of motion of the scalar field.

For the first part of this problem, you may consult Appendix D of R.M. Wald’s textbook, General

Relativity, to find out how the Ricci scalar transforms under local Weyl rescalings.

Students unfamiliar with the concepts of the spacetime metric or the stress-energy tensor might consult:

http://en.wikipedia.org/wiki/Metric %28general relativity%29

http://en.wikipedia.org/wiki/Energy-momentum tensor %28general relativity

Problem 5: Given the expression for the Rényi entropies

Sn =
1

1− n
log Tr [ρnA] ,

verify that one recovers the standard von Neumann entropy in the limit n→ 1, i.e.,

S1 = lim
n→1

Sn = −Tr (ρA log ρA) .

Verify the same expression for the entanglement entropy emerges from the following limit

SEE = − lim
n→1

∂

∂n
log Tr [ρnA] .

Problem 6: We would like to use the replica trick approach introduced in the first lecture (along with

some embelishments appearing in later lectures) to show that in a two-dimensional CFT, the central

charge c appearing in the trace anomaly, i.e.,

〈T aa〉 =
c

24π
R ,

controls the entanglement entropy. In particular, consider the CFT in its vacuum state on a compacti-

fied time slice, i.e., on a circle with circumference 2πR, and evaluate the entanglement entropy for half

of the circle with the following steps: 1) The Renyi entropies are determined with Zn, a (Euclidean)

path integral an n-fold cover of the infinite cylinder. Take advantage of the conformal symmetry to

transform this manifold to an n-fold cover of a round two-sphere. 2) Beginning with the formula

SEE = lim
ε→0

(
1 +

∂

∂ε

)
logZ1−ε ,

relate the derivative R∂RSEE to the conformal anomaly above (and hence the central charge). 3)

Integrate the resulting expression over all scales up the final radius R and you should find

SEE =
c

3
log (R/δ) .

4) (Optional:) With another Weyl rescaling, one to shift the interval of interest from being half of the

initial circle, i.e., the initial time slice, to being an arbitrary interval of angular size 2θ in which case

the entanglement entropy becomes

SEE =
c

3
log

(
R

δ
sin θ

)
=
c

3
log

(
L

2πδ
sin

(
π`

L

))
,
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where the last expression is a standard result by Calabrese and Cardy [4], with L and ` being the

circumference of the circle and the length of the interval, respectively. Note that this expression is

symmetric under the `→ L− ` and maximal for ` = L/2.

(Optional:) Consider extending the above calculation to a d-dimensional CFT in its vacuum state

on R × Sd−1, with even d. In particular, let us choose the region A to be the ball on the tE = 0

slice enclosed by (d − 2)-dimensional sphere with an angular width of θ0. Verify that the universal

contribution to the entanglement entropy is given by

Suniv = (−)
d
2−14A log

(
R

δ
sin θ0

)
,

where A is the central charge appearing in front of the Euler density in the trace anomaly, i.e.,

〈T aa〉 =
∑

Bi (Weyl invariants)i − (−)d/22A (Euler density)

In solving this problem, you may wish to consult section 5 of [5].

Problem 7: Killing vectors are used describe the symmetries of a geometry. The fancy way of

describing such a symmetry is to say that the Lie derivative of the metric with respect to a Killing

vector vanishes

Lkgab = ∇akb +∇bka = 0 .

An equivalent approach is to consider an infinitesimal coordinate transformation xa → x̃a = xa+ε ka,

where ε is an infinitesimal parameter and ka is a Killing vector. Then the line element must transform

as

gabdx
adxb → g̃abdx̃

adx̃b = gabdx̃
adx̃b +O(ε2) .

(This transformation is nicely described on the second webpage below.)

Consider the following three vectors:

k1 = b ∂x (where b is a constant),

k2 = x ∂y − y ∂x ,
k3 = x ∂t + t ∂x .

Show that these are each Killing vectors of the flat space metric ηab. For each of these vectors, in the

(x, y)- or (t, x)-plane, draw a small vector at various points indicating the direction and magnitude of

the corresponding vector. The latter exercise should allow you to see that k1, k2 and k3 generate a

translation along the x-axis, a rotation in the (x, y)-plane and a boost in the (t, x)-plane, respectively.

If one replaces t = −i tE, show that the flat space metric becomes

ds2
E = dt2E + dx2 + dy2 + · · ·

and the boost Killing vector becomes k3 = ikE,3 where

kE,3 = x ∂tE − tE ∂x .

That is, it becomes a rotation in the (tE, x)-plane.
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Students who want to get a few more pointers about Killing vectors might consult:

http://en.wikipedia.org/wiki/Killing vector field

http://mathworld.wolfram.com/KillingVectors.html

Problem 8: In one of the later lectures, I introduced the idea of a modular or entanglement Hamil-

tonian to represent a density matrix as an operator

ρA = e−K/Tr(e−K) .

Now in general, K is a complicated nonlocal operator, however, as discussed in the lecture, it is a rela-

tively simple object when considering the Minkowski vacuum of a QFT reduced to the Rindler wedge.

The key to this simplification is that the global state (i.e., the vacuum) and the background geometry

(i.e., flat space) are invariant under a Killing vector that leaves the entangling surface invariant (i.e.,

the boost vector K3 in the previous problem1). In this case, the entanglement Hamiltonian can be

written in a more covariant form with

K = 2π

∫
A

dΣµ Tµν K
ν

where dΣµ is the covariant volume element on the spatial slice that is being integrated over, e.g.,

dΣµ = dd−1y
√
−gnµ where nµ is a unit vector normal to the surface.

Show that in the case of the Rindler wedge, this expression reduces to the same expression given

in class if one integrates over the surface t = 0. Given the above covariant form one can consider

evaluating this expression on other Cauchy surfaces that end of the same entangling surface. Hence

try evaluating this expression for the Rindler wedge but on some other interesting Cauchy surface,

e.g., t = b x where |b| < 1. Show that in fact H is a conserved charge. That is, it will yield the

same result when evaluated on any Cauchy surface ending on the same entangling surface. Hint: This

follows from conservation of the stress tensor, i.e., ∇µTµν = 0, and the fact that Kµ is a Killing vector,

i.e., ∇µKν +∇νKµ = 0.

If the QFT being considered is in fact a conformal Killing vector, then the above simplications also

apply when Kµ is a conformal Killing vector satisfying

∇µKν +∇νKµ =
2

d
∇σKσ gµν .

In terms of an infinitesimal coordinate transformation, xa → x̃a = xa + εKa, a conformal Killing

vector yields

gµνdx
µdxν → g̃µνdx̃

µdx̃ν = λ(x̃)2 gµνdx̃
µdx̃ν +O(ε2) .

That is, rather than remaining invariant, the metric transforms by a Weyl rescaling. Show that for a

CFT and Kµ being a conformal Killing vector, the H given above is a still conserved charge, i.e., it

yields the same result when evaluated on any Cauchy surface ending on the same entangling surface.

Hint: Use the fact that the stress tensor of a CFT is traceless, i.e., Tµ
µ = 0.

Problem 9: Verify the details of the construction of an entropic c-theorem for RG flows of two-

dimensional quantum field theories (after it is discussed in the lectures).

1Implicitly, here as in the lecture, the entangling surface was chosen as x = 0 in the t = 0 time slice.
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In flat space in higher dimensions, one could could construct an entangling surface consisting of the

two flat parallell walls, e.g., the surfaces x = ±` in a constant time surface. One could again apply

the same construction as above for this situation in higher dimensions. What are the implications of

the resulting inequality?

The original source for the entropic c-theorem in two dimensions is [6]. A discussion of the the second

part of the question appears in [7] — see the discussion beginning around eq. (7.2).

Problem 10: Consider (d+ 1)-dimensional anti-de Sitter space with metric

ds2 =
L2

z2

(
dz2 − dt2 + d~x2

)
which describes the boundary CFT in flat space, i.e., the corresponding boundary metric is just

ds2
bdy = −dt2 +d~x2. Consider a spherical entangling surface in the boundary theory given by |~x|2 = R2

on the t = 0 slice. Evaluate the holographic entanglement entropy using the Ryu-Takayanagi formula.

In particular, what is the universal contribution to the entanglement entropy?

Hint: Show that the extremal surface in the bulk is given by the ”hemisphere”: z2 + |~x|2 = R2.

This problem was first discussed in [8].

Problem 11: Consider three-dimensional anti-de Sitter space in global coordinates

ds2 =
dr2

r2

L2 + 1
−
(
r2

L2
+ 1

)
dt2 + r2dφ2 .

which is dual to the vacuum state of a two-dimensional boundary CFT on R × S1. Note that the

corresponding boundary metric becomes ds2
bdy = −dt2 + L2dφ2, and since the angle φ has periodicity

2π, the boundary circle has circumference 2πL. The extremal surfaces on constant time slices in the

bulk (here, they correspond to geodesics) can be written as

r2(θ) =
L2 cos2 θ0

sin2 θ0 − sin2 θ

(Optional: Verify the surfaces described by this equation are extremal.)

What is the minimal radius reached reached by one of these surfaces (i.e., for a particular choice

of θ0)? At what angle θ does this surface reach the asymptotic boundary? What is the size of the

corresponding entangling region in the boundary metric?

Evaluate the holographic entanglement entropy for one of these surfaces using the Ryu-Takayanagi

formula. Note that as discussed in the lectures, since the extremal surface extends all the way to the

asymptotic boundary, the area (i.e., the length) of the surface diverges. We can regulate the result by

introducing a radial cut-off at r = L2/δ where δ is the short-distance cut-off in the boundary CFT.

With this regulated integral, show that you recover the well-known result of Calabrese and Cardy [4],

which holds for any two-dimensional CFT (and so it must also hold for a holographic CFT):

S(θ0) =
c

3
log

[
2L

δ
sin θ0

]
.

Here, we have use c = 3L/(2G) for the central charge of the boundary CFT.
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Problem 12: Consider the following vector in d-dimensional flat space

ζ = R∂t −
1

R
[t2 + |~x|2]∂t −

2

R
txi∂i .

Show that this vector is a conformal Killing vector in flat space. Describe the orbits of ζ — in

particular, show that the entangling surface in the previous problem is left invariant. Construct the

modular Hamiltonian for the boundary CFT in the previous problem (in terms of the stress tensor

Tab).

Problem 13: Consider the following vector in (d+ 1)-dimensional AdS space

ξ =
1

R
[R2 − z2 − t2 − |~x|2] ∂t −

2

R
t [z∂z + xi∂i] .

Show that this vector is a Killing vector in AdS space. Show that ξ reduces to ζ from the previous

problem on the boundary of AdS space, i.e., in the limit z → 0. Describe the orbits of ξ — in

particular, show that the extremal bulk surface in problem 10 is left invariant.

The vectors considered in the previous two problems and related topics are discussed in [10, 20].

Problem 14: Using holographic techniques, evaluate the Rényi entropies for the case described in

problem 7.

The solution of this problem may be found in [11].

Problem 15: Examine the details of the Lewkowycz and Maldacena [21] argument proving the Ryu-

Takayanagi prescription for holographic entanglement entropy. In particular, show that the location

of the singular bulk surface en is determined by the equation Ki = 0, where Ki is the trace of the

two extrinsic curvatures of en. (Note that Kt = 0 automatically for the static or time-symmetric

backgrounds under consideration.) Also show that evaluating the gravity action yields

∂nIgrav(M̂n)
∣∣∣
n=1

=
A
4G

,

where A is the area of the extremal surface in the bulk.

You may find the discussion in [22] useful, but you will also find that there are a few typos there.

Problem 16: In the lectures, I mentioned that the F-theorem was originally proved in terms of the

entanglement entropy of circles but that a more rigorous proof can be constructed in terms of the

mutual information of two circular regions — see [20]. Now at a fixed point, the underlying theory is a

CFT and so conformal transformations can be used to map the two concentric circles to other kinds of

planar geometries, for which when properly interpreted, the mutual information should yield precisely

the same constant. Hence the problem here is to reformulate the proof of the F-theorem discussed in

[20] in terms of the mutual information of two regions with a new geometry. In particular, can you

find a geometry which may lend itself to a proof that can be extended to higher dimensions?
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For students interested in studying topics discussed in my lectures in more detail or more generally,

topics related to the new connections between quantum information and quantum gravity, let me

suggest that you look at the following:

http://www.perimeterinstitute.ca/it-qubit-summer-school/it-qubit-summer-school-resources

This webpage has a compilation of all of the lectures and problem sets given at the “It from Qubit”

Summer School, which was held at the Perimeter Institute, July 18–29, 2016.
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