

S.B.B. Almeida¹, P.A. Pimentel¹ e W.Q. Neves^{1,*}

¹Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus Fortaleza, Fortaleza, CE, Brasil.

RESUMO

O efeito Doppler é um fenômeno físico bastante conhecido e de fácil compreensão. Contudo, quando tratamos esse assunto em sala de aula, mesmo partindo das condições mais triviais, ele ainda é um fenômeno difícil de assimilar, haja vista que sua compreensão demanda uma boa familiarização com sistemas de referência e velocidades relativas, sem mencionar a falta de recursos nas escolas, principalmente as pertencentes à rede pública. Nesse contexto, apresentamos um experimento bastante simples, intuitivo e de baixo custo, mas cuios resultados apresentam boa precisão. Utilizando os equipamentos descritos neste artigo, medimos a velocidade do som com erro inferior a 10%. Utilizamos para isso o recurso mais abundante em sala de aula: o smartphone.

Palavras-chave: efeito Doppler; experimento; baixo custo; *smartphone*

verdade que estamos em um período histórico que está cada vez mais voltado à disseminação das Tecnologias da Informação e da Comunicação (TICs) [1]. Às vezes se torna muito dificil filtrar o que é relevante, mediante tanta informação. Isso vem se refletindo em sala de aula, principalmente nas aulas de ciências naturais, como física e química, visto

que uma ampla gama de informações disponíveis na internet não passa por um crivo científico. A fascinação pelo desconhecido e as discussões que beiram a ficção são com certeza saudáveis para instigar a curiosidade, e isso certamente é essencial no processo de aprendizagem. Con-

tudo, isso também abre margem para abordagens tão amplas que podem saturar o aluno de informações que ele ainda não tem base conceitual para compreender, podendo prejudicar a linearidade do método de ensino clássico. Por isso, o papel do professor começa a se ampliar, no sentido de se adequar ao uso das tecnologias, tornando-as efetivas no processo de ensino-aprendizagem.

Nesse contexto, a Base Nacional Comum Curricular (BNCC) prevê o uso de tecnologias em sala de aula, visando à formação crítica e responsável dos alunos ao longo da educação básica [2]. Isso tem motivado cada vez mais o desenvolvimento de trabalhos que buscam integrar as novas tecnologias à sala de aula, como softwares para videoanálise

[3, 4], que auxiliam nas aulas experimentais. Trabalhos recentes têm abordado propostas de verificação experimental, em sala de aula, do efeito Doppler, usando recursos tecnológicos como *tablets*, *smartphones* e computadores [5-8].

Nesse sentido, apresentamos uma proposta experimental para verificação qualitativa e quantitativa do efeito Doppler, baseado em materiais de fácil acesso, bem como a possibilidade de se

O efeito Doppler consiste em uma

mudança aparente na frequência

da onda emitida por uma fonte

sonora. Esse efeito pode ser

verificado e analisado

experimentalmente em sala de

aula, utilizando materiais de fácil

acesso. Este experimento instiga

a curiosidade do aluno e torna o

aprendizado significativo do

efeito Doppler

medir indiretamente a velocidade do som em sala de aula. Neste trabalho, utilizamos apenas os smartphones, devido ao grande número de alunos que os possuem. Segundo a pesquisa TIC Kids Online Brasil, realizada em 2018, 93% das crianças e adolescentes utilizam smartphones para

acessar a *internet* [9]. Por isso, propomos a utilização de *smartphones* como emissores e receptores para verificação experimental do efeito Doppler. Assim, o experimento pode ser reproduzido em qualquer sala de aula que tenha no mínimo duas pessoas com *smartphones* e o *kit* que será apresentado mais adiante.

2. O efeito Doppler

O efeito Doppler foi originalmente descrito pelo físico austríaco Christian Andreas Doppler (1803-1853), no trabalho *Über das farbige Licht der Doppelsterne (Sobre a cor da luz das estrelas duplas*). Esse efeito consiste em uma mudança aparente na frequência da onda emitida por uma fonte sonora (um efei-

^{1.} Introdução

[#]Autor de correspondência. E-mail: wellington@fisica.ufc.br.

to análogo também ocorre com as ondas eletromagnéticas). O efeito Doppler pode ser deduzido de forma simples, utilizando os conceitos de velocidade relativa. A seguir, deduziremos as expressões para o efeito Doppler e logo após faremos uma descrição teórica do nosso experimento.

2.1. Primeira situação: fonte em repouso e o observador em movimento

Vamos considerar primeiramente uma fonte sonora em repouso $(V_f=0)$ e um observador (detector) em movimento $(V_o\neq 0)$, conforme representado no esquema da Fig. 1. Nesse caso, os comprimentos de onda λ são constantes.

Considerando que o observador se aproxima da fonte com velocidade (V_o) , a velocidade relativa (V_{rel}) nesse caso é:

$$V_{rel} = V_s + V_o. (1)$$

Usando $V = \lambda f$, podemos associar uma frequência relativa f' com V_{rel} através de $V_{rel} = \lambda f'$, ficando:

$$\lambda f' = V_s + V_o. \tag{2}$$

Portanto, $f'=rac{V_s}{\lambda}+rac{V_o}{\lambda}$. Como $rac{V_s}{\lambda}=f$, temos que $rac{1}{\lambda}=rac{f}{V_s}$, então

$$f' = f + \frac{V_o f}{V_s}. (3)$$

Generalizando para o caso do observador (detector) que se aproxima/afasta da fonte, podemos escrever

$$f' = f \frac{V_{s} \pm V_{o}}{V_{c}}.$$
 (4)

Essa equação descreve o efeito Doppler para a situação 1. Perceba que se o observador (detector) se afasta da fonte $(V_0 < 0)$, então f' < f.

2.2. Segunda situação: fonte em movimento e o observador em repouso

Na segunda situação, vamos considerar a fonte em movimento uniforme $(V_f \neq 0)$ e o observador (detector) em repouso $(V_o = 0)$, conforme mostra o esquema da Fig. 2. Nessa situação, os comprimentos de onda detectados pelo observador são diferentes de λ .

Nesse caso, perceba que $\lambda > \lambda_1 > \lambda_2$ e assim por diante. O primeiro comprimento λ é relativo ao início do movimento; logo, em relação à velocidade do som o comprimento de onda emitido é $\lambda = \frac{V_s}{f}$, então o comprimento de onda percebido em um ponto posterior qual-

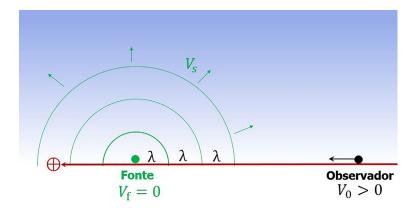


Figura 1 - Situação em que uma fonte sonora está em repouso e o observador (detector) em movimento. As velocidades do som, da fonte e do observador são respectivamente V_s , V_f e V_o .

quer, ou seja, aproximando-se do nosso referencial (V_f <0), é a diferença entre o λ relativo à velocidade do som

$$\lambda' = \frac{V_s}{f} - \frac{V_f}{f}.$$
 (5)

Então, a frequência percebida nesse meio tem que ser $f' = \frac{V_s}{\lambda'}$. Substituindo na Eq. (5), fica

$$f' = f \frac{V_s}{V_s - V_f}. (6)$$

Essa equação descreve o efeito Doppler para o caso em que a fonte está em movimento uniforme e o observador (detector), em repouso. Se a fonte estiver se afastando do observador (detector), para o nosso referencial isso implica que $(V_f > 0)$, então teremos $\lambda' = \frac{V_s}{f} + \frac{V_f}{f}$, que resulta em

$$f' = f \frac{V_s}{V_s + V_f}. (7)$$

Para abranger as duas possibilidades,

escrevemos:

$$f' = f \frac{V_s}{V_s \pm V_f}.$$
 (8)

Perceba que se V_f <0 no referencial que escolhemos, então f' > f.

2.3. Caso geral: fonte e o observador em movimento

Observe que os fatores $\frac{V_s \pm V_o}{V_s}$ e $\frac{V_s}{V_s \pm V_f}$, nas Eqs. (4) e (8), corrigem a medida de f para f'. Portanto, quando consideramos as orientações dos movimentos e usamos os sinais convenientes para um único referencial, obtemos

$$f' = f \frac{V_s \pm V_0}{V_s \mp V_f}.$$
 (9)

A Eq. (9) é a expressão geral do efeito Doppler. Para facilitar, adotamos o referencial positivo como sendo a aproximação do observador em direção à fonte (observador → fonte). A Eq. (9) é válida para os casos em que os movimentos da fonte e do observador ocorrem na mesma direção que os "conecta". Caso

Figura 2 - Situação em que uma fonte sonora está em movimento uniforme e o observador (detector), em repouso.

contrário, deve ser considerado o ângulo entre as direções dos movimentos.

3. Fonte executando movimento circular uniforme

Agora, faremos uma abordagem teórica para a situação do nosso experimento. Suponha que uma fonte sonora execute um movimento circular uniforme de raio R com velocidade tangencial V_t ,

$$V_t = \frac{2\pi R}{T} = \omega R,\tag{10}$$

onde T é o período do movimento. Considere também que o detector está em repouso. Esse caso é análogo à situação (2) (observador em repouso e a fonte em movimento). Fazendo $V_o = 0$ e substituindo V_f por V_t na Eq. (9), temos

$$f' = f \frac{V_s}{V_s \pm \omega R}.$$
 (11)

Um exercício interessante é que, conhecendo a frequência f da fonte e medindo f' e o período $T=\frac{2\pi}{\omega}$, é possível medir indiretamente o raio R descrito pela fonte. Descreveremos a seguir os equipamentos utilizados e os resultados experimentais.

4. Experimental

4.1. Materiais

O aparato experimental de baixo custo para verificação do efeito Doppler consiste de: 1 (um) fio aproximadamente inextensível; 1 (uma) garrafa PET; 2 (dois) smartphones; smartphone emissor com o aplicativo gerador de frequências instalado (Fig. 3) - o aplicativo está disponível na Ref. [10]; smartphone receptor com o aplicativo osciloscópio instalado (Fig. 4) - o aplicativo está disponível na Ref. [11]. Deve-se usar a garrafa PET e o fio conforme mostra a Fig. 5. Para os experimentos quantitativos são necessários: 2 (dois) smartphones, 1 (uma) base giratória para apoio do smartphone emissor e 1 (um) computador para videoanálise - utilizamos para isso o software tracker [12].

4.2. Análise qualitativa do efeito Doppler

Após o efeito Doppler ser abordado teoricamente em sala de aula, sugerimos ao professor a reprodução do experimento a seguir, para uma demonstração qualitativa desse efeito. De posse dos materiais necessários, coloca-se o *smartphone* emissor dentro da garrafa e então fazemos o sistema para girar em um plano horizontal, conforme mostra

Figura 3 - Gerador de frequência, desenvolvido por *Hoel Boedec* [10].

a Fig. 6. A fim de evitar erros muito expressivos e acidentes, o *smartphone* receptor, bem como os alunos, devem estar a uma distância de segurança d (d > R) do centro do disco, como mostra a Fig. 7.

Aplicando esse experimento, o pro-

Figura 4 - Oscilloscope, desenvolvido por Sound-Base LLC [11].

Figura 5 - Detalhes da montagem para o experimento qualitativo.

fessor deverá direcionar a atenção dos alunos para as mudanças nas frequências detectadas pelos ouvidos deles e as detectadas pelo *smartphone* receptor, enquanto a fonte executa o movimento circular. É importante levantar uma discussão em sala sobre a relação entre o som ouvido pelos alunos e o som emitido pelo *smartphone* quando ele está em repouso. Os alunos perceberão uma alternância periódica de frequências,

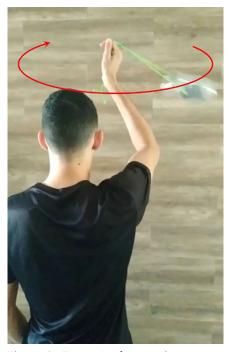


Figura 6 - Execução do experimento.

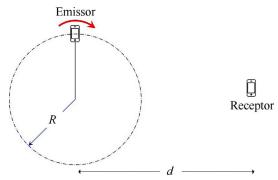


Figura 7 - Esquema da montagem experimental para verificação quantitativa do efeito Doppler.

que chamaremos de frequências máximas e mínimas ($f_{\rm max}'$ e $f_{\rm min}'$). Essa alternância corresponde, no *smartphone* receptor, às oscilações da frequência detectada em torno da frequência emitida f. Também é importante ser levantada pelo professor uma discussão em sala sobre a localização do *smartphone* emissor, no instante em que isso ocorre (abordaremos isso mais adiante), pois o aluno poderá ver nitidamente as variações de frequência no *smartphone* receptor por meio do *oscilloscope* [11].

4.3. Análise quantitativa do efeito Doppler

A Fig. 7 mostra o esquema da montagem experimental que utilizamos para verificar quantitativamente o efeito Doppler. A Fig. 8 mostra os detalhes da fonte emissora (*smartphone*) acoplada ao disco giratório.

Utilizamos o software Tracker [12] para uma videoanálise do experimento. Com isso, determinamos V_t e ω . Os resultados foram comparados com os valores teóricos obtidos por meio das medidas das frequências pelo *Oscilloscope* [11] através da Eq. (11). Nesses cálculos, consideramos R = 0.22 m (raio do disco)

Figura 8 - Fonte emissora fixada na base giratória.

e a velocidade do som igual a 343 m/s. Testamos a faixa de frequências emitida de 800 Hz-2200 Hz e detectamos as respectivas frequências máximas e mínimas ($f'_{\rm max}$ e $f'_{\rm min}$). Os resultados experimentais são apresentados nas Tabelas 1, 2 e 3.

A comparação entre os resultados teóricos e experimentais apresentaram erros inferiores a 10%, o que é extremamente satisfatório, considerando os materiais empregados no experimento. Os desvios são atribuídos aos ruídos externos.

5. Resultados e discussão

As "oscilações" das f'_{\max} e f'_{\min} detectadas nos nossos experimentos correspondem às variações das posições diametralmente opostas do *smartphone* emissor quando ele executa o movimento circular.

Visando encontrar a melhor faixa de frequências para as demonstrações do efeito Doppler em sala de aula por meio deste experimento, medimos através do experimento da seção 4.3 as $f'_{\rm max}$ e $f'_{\rm min}$ para diferentes frequências emitidas. A Tabela 3 mostra os intervalos de frequências $f'_{\rm max}$ e $f'_{\rm min}$ detectados para cada frequência emitida f pelo smartphone emissor.

A Fig. (9) mostra as frequências emitidas pelo smartphone emissor f e as frequências f'_{\max} e f'_{\min} detectadas pelo

Tabela 1: Velocidades tangenciais V_t .

f(Hz)	V_t (m/s) (videoanálise)	V_t (m/s) (calculado)	Erro (%)
800	4,37	4,19	4,20
900	2,85	2,61	8,70
1000	3,62	3,36	7,70
1100	3,50	3,06	14,30
1200	3,76	3,10	21,00
1300	3,96	3,62	9,00
1400	3,56	3,37	5,00
1500	3,90	3,58	8,90
1600	3,86	3,36	14,00
1700	3,90	3,75	4,00
1800	4,17	3,72	6,30
1900	4,41	4,76	7,30
2000	4,44	4,03	10,00
2100	4,27	4,31	1,00
2200	4,71	4,42	6,50

Tabela 2: Dados experimentais das velocidades angulares ω .

f(Hz)	ω (rad/s) (videoanálise)	ω (rad/s) (calculado)	Erro (%)
800	19,89	19,04	4,20
900	12,97	11,9	8,90
1000	16,48	15,27	7,90
1100	15,95	13,90	14,70
1200	17,13	14,09	21,00
1300	17,77	17,59	8,00
1400	16,20	15,31	5,00
1500	17,77	16,27	9,20
1600	17,58	15,27	15,00
1700	17,79	17,04	4,40
1800	18,98	17,81	6,50
1900	20,08	21,63	7,10
2000	20,20	18,31	10,00
2100	19,43	19,59	0,80
2200	21,42	20,09	6,60

smartphone receptor. É nítido um comportamento linear crescente para a dependência de f'_{\max} e f'_{\min} com a frequência emitida f, conforme previsto pela Eq. (11). As retas foram bem ajustadas pelas seguintes equações lineares: y_{\max} (f) = 1,01f e $y_{\min}(f) = 0,98f$.

Observamos que as dependências f'_{\max} e f'_{\min} têm coeficientes angulares ligeiramente diferentes. Verificamos que a reta preta contém os valores para os quais o *smartphone* emissor se aproxima do receptor, enquanto a reta azul contém os valores de quando ele se afasta do receptor.

È interessante notar que as variações entre as freguências mínima e máxima detectadas pelo smartphone receptor aumentam conforme a frequência emitida aumenta (ver Tabela 3 e Fig. 9). Para as frequências emitidas acima de 1300 Hz, essa variação torna-se mais evidente. Nossa audição permitiu observar que a faixa de frequências de 1300 Hz-1900 Hz torna a verificação do efeito Doppler mais perceptível. Para efeito de teste, usamos a Eq. (11), utilizando a frequência emitida de 1400 Hz $(f'_{\text{max}} = 1414 \text{ Hz})$ e encontramos, de forma indireta, a velocidade do som de 359,9 m/s; isso representa um erro de 4,9%. Portanto, o experimento apresenta excelentes resultados, mesmo considerando a simplicidade dos materiais envolvidos.

6. Considerações finais

O experimento mostrado neste artigo é bastante promissor para enriquecer as aulas sobre o efeito Doppler, mesmo considerando a baixa condição de isolamento acústico - que se aproxima das condições reais de muitas salas de aula. Além disso, o experimento proporciona uma maneira indireta de se medir a velocidade do som com excelente precisão. Nossos resultados mostraram que o efeito Doppler é mais perceptível, considerando os materiais empregados em nossos experimentos, quando a fre-

Tabela 3: Dados experimentais.

f(Hz)	Intervalo detectado (f'_{\max} e f'_{\min})	Δ <i>f</i> (Hz)
800	810-790	20
900	907-893	14
1000	1010-990	20
1100	1110-1090	20
1200	1210-1190	20
1300	1314-1286	28
1400	1414-1387	27
1500	1516-1484	32
1600	1616-1585	31
1700	1719-1681	38
1800	1821-1779	42
1900	1927-1874	53
2000	2024-1974	50
2100	2127-2073	54
2200	2229-2168	61

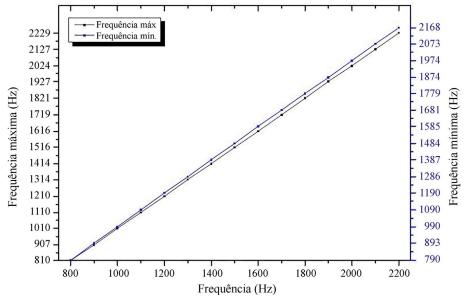


Figura 9 - Dependência das frequências.

quências emitidas pelo *smartphone* emissor encontram-se entre 1300 Hz-1900 Hz.

gia do Ceará *campus* Fortaleza pelo parcial suporte.

Agradecimentos

Os autores agradecem ao Instituto Federal de Educação, Ciência e TecnoloRecebido em: 26 de Agosto de 2020 Aceito em: 29 de Setembro de 2020

Referências

- [1] G.M.S Ferreira, R.G.M Castiglione, Educação e Pesquisa, 44, e153673 (2018).
- [2] Ministério da Educação, *Base Nacional Comum Curricular* (MEC/SEMTEC, Brasília, 2017), disponível em http://basenacionalcomum.mec.gov. br/images/BNCC_EI_EF_110518_versaofinal_site.pdf.
- [3] V.L.B. Jesus, D.G.G. Sasaki, Revista Brasileira de Ensino de Física, 36, 3503 (2014).
- [4] M.V. Pereira e S.S. Barros, Revista Brasileira de Ensino de Física, 32, 4401 (2010).
- [5] M. Monteiro, C. Cabeza, M.C. Arturo, Revista Brasileira de Ensino de Física, 37, 1303 (2015).
- [6] L.P. Vieira, V.O.M. Lara, D.F. Amaral, Revista Brasileira de Ensino de Física, 36, 3505 (2014).
- [7] A.C.P. Fernandes, L.T.S. Auler, J.A.O. Huguenin, W.F. Balthazar, Revista Brasileira de Ensino Física, 38, 3504 (2016).
- [8] M.A.A. Silva, T.A.M. Sampaio, A Física na Escola 18(2), 1 (2020).
- [9] Unesco, *Tic Kids Online 2018*. (Unesco, Paris, 2019), p. 259-260, disponível em https://cetic.br/media/docs/publicacoes/216370220191105/tic_kids_online_2018_livro_eletronico.pdf.

- [10] H. Boedec. *Aplicativo: Gerador de Frequência*, disponível em https://play.google.com/store/apps/details?id=com.boedec.hoel.frequencygen erator&hl=pt_BR, 2019.
- [11] L. Sound-Base Audio. *Aplicativo: Oscilloscope*, disponível em https://play.google.com/store/apps/details?id=org.sbaudio.oscope&hl=pt_BR, 2019.
- [12] Tracker. Tracker Versão 5.1.5: Open Source Physics, disponível em https://physlets.org/tracker, 2020.